Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/i008/coco-dataset-explorer

Streamlit tool to explore coco datasets
https://github.com/i008/coco-dataset-explorer

coco-datasets instance-segmentation object-detection streamlit

Last synced: 3 months ago
JSON representation

Streamlit tool to explore coco datasets

Awesome Lists containing this project

README

        

# Dear visitor,
If you think about using this software - there are better alternatives out there that do the same (and much much more) and are actively maintained.
I recommend you to check out fiftyone:
- https://voxel51.com/docs/fiftyone/

### What is this

This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results
and calculate important metrics.

### Running the explorer on example data

You can use the predictions I prepared and explore the results on the COCO validation dataset.
The predictions are coming from a Mask R-CNN model trained with mmdetection.

1. Download (and extract in project directory) the labels, annotations and images:

https://drive.google.com/open?id=1wxIagenNdCt_qphEe8gZYK7H2_to9QXl

2. Setup using docker

```sh
sudo docker run -p 8501:8501 -it -v "$PWD"/coco_data:/coco_data i008/cocoexp:latest \
--coco_train /coco_data/ground_truth_annotations.json \
--coco_predictions /coco_data/predictions.json \
--images_path /coco_data/images/
```

2. Setup using conda
```sh
conda env update
conda activate cocoexplorer
streamlit run coco_explorer.py -- --coco_train ./coco_data/ground_truth_annotations.json --coco_predictions ./coco_data/predictions.json --images_path ./coco_data/val2017/
```

2. Setup using pip

```sh
python3 -m venv .venv
. .venv/bin/activate
pip install -r requirements.txt
streamlit run coco_explorer.py -- --coco_train ./coco_data/ground_truth_annotations.json --coco_predictions ./coco_data/predictions.json --images_path ./coco_data/val2017/
```

3. go to http://localhost:8501

### Running on your own data

In the same way you can explore your own results. Just follow the official COCO dataset format for annotations and predictions.

### Examples

![alt text](./static/demo1.png "Logo Title Text 1")

![alt text](./static/demo2.png "Logo Title Text 1")