Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/iamdecode/cvplot
Understand machine learning models with Contribution-Value plots
https://github.com/iamdecode/cvplot
interpretability learning machine
Last synced: 2 months ago
JSON representation
Understand machine learning models with Contribution-Value plots
- Host: GitHub
- URL: https://github.com/iamdecode/cvplot
- Owner: iamDecode
- License: bsd-2-clause
- Created: 2020-12-31T15:00:00.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2021-12-01T22:49:53.000Z (about 3 years ago)
- Last Synced: 2024-10-13T03:44:22.674Z (2 months ago)
- Topics: interpretability, learning, machine
- Language: Vue
- Homepage: https://explaining.ml/cvplots
- Size: 392 KB
- Stars: 5
- Watchers: 2
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
README
# Contribution-Value plots
The Contribution-Value plot is a visual encoding for interpreting machine learning models. [[more information]](https://explaining.ml/cvplots)
## Demo
## Installation
To install use pip:
```
$ pip install cvplot
```If you use jupyter lab, also run:
```
$ jupyter labextension install cvplot
```for classic jupyter notebooks, run:
```
jupyter nbextension install --py --symlink --overwrite --sys-prefix cvplot
jupyter nbextension enable --py --sys-prefix cvplot
```## Development
For a development installation (requires npm or yarn),
```
$ git clone https://github.com/iamDecode/cvplot.git
$ cd cvplot
```You may want to (create and) activate a virtual environment before continuing with:
```
$ pip install -e .
$ jupyter labextension install js
$ jupyter nbextension install --py --symlink --overwrite --sys-prefix cvplot
$ jupyter nbextension enable --py --sys-prefix cvplot
```When actively developing your extension, build Jupyter Lab with the command:
```
$ jupyter lab --watch
```This takes a minute or so to get started, but then automatically rebuilds JupyterLab when your javascript changes.
## Citation
If you want to refer to our visualization, please cite our paper using the following BibTeX entry:
```bibtex
@article{collaris2021comparative,
title={Comparative Evaluation of Contribution-Value Plots for Machine Learning Understanding},
author={Collaris, Dennis and van Wijk, Jarke J.},
journal={Journal of Visualization},
year={2021},
issn={1875-8975},
doi={10.1007/s12650-021-00776-w},
url={https://doi.org/10.1007/s12650-021-00776-w}
}
```## License
This project is licensed under the BSD 2-Clause License - see the [LICENSE](LICENSE) file for details.