Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ianhaggerty/final-capstone
This represents the final capstone project in my HyperionDev Data Science (fundamentals) course. A dataset of Amazon customer reviews is analysed using natural language processing.
https://github.com/ianhaggerty/final-capstone
amazon data-analytics data-science data-visualization dataset matplotlib nlp nlp-machine-learning numpy pandas plotly reviews seaborn spacy tabulate textblob wordcloud
Last synced: about 1 month ago
JSON representation
This represents the final capstone project in my HyperionDev Data Science (fundamentals) course. A dataset of Amazon customer reviews is analysed using natural language processing.
- Host: GitHub
- URL: https://github.com/ianhaggerty/final-capstone
- Owner: ianhaggerty
- Created: 2024-03-04T15:40:01.000Z (11 months ago)
- Default Branch: master
- Last Pushed: 2024-03-08T13:51:52.000Z (11 months ago)
- Last Synced: 2024-12-06T20:46:35.572Z (about 2 months ago)
- Topics: amazon, data-analytics, data-science, data-visualization, dataset, matplotlib, nlp, nlp-machine-learning, numpy, pandas, plotly, reviews, seaborn, spacy, tabulate, textblob, wordcloud
- Language: Jupyter Notebook
- Homepage: https://www.linkedin.com/in/ihaggerty/
- Size: 7.58 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# [Capstone Project](https://github.com/ianhaggerty/finalCapstone/tree/master) — [NLP Applications](https://medium.com/@mohamadhasan.sarvandani/top-applications-of-nlp-54834ca9c8ca)
## [CoGrammar](https://skills.cogrammar.com/) / [HyperionDev](https://www.hyperiondev.com/) / [Portfolio](https://www.hyperiondev.com/portfolio/IH23120012475/)
## Introduction
This repository represents the final capstone project in my _HyperionDev Data Science (Fundamentals)_ course. The main script can be found [here](https://github.com/ianhaggerty/finalCapstone/blob/master/sentiment_analysis.py) and corresponding
notebook [here](https://github.com/ianhaggerty/finalCapstone/blob/master/notebooks/sentiment_analysis.ipynb).The objective of this project was to discover interesting and actionable insights within a dataset of [amazon reviews](https://www.kaggle.com/datasets/datafiniti/consumer-reviews-of-amazon-products).
[spaCy](https://spacy.io/usage) was used to conduct NLP analysis, in conjunction with
[TextBlob](https://textblob.readthedocs.io/en/dev/) to determine the sentiment and subjectivity.Please see the [project requirements](https://github.com/ianhaggerty/finalCapstone/blob/master/reports/project_desc.pdf) and corresponding [report](https://github.com/ianhaggerty/finalCapstone/blob/master/reports/sentiment_analysis_report.pdf).
Offical grading, generously provided by Kenneth Mlimi, can be found [here](https://hyperiondev.cogrammar.com/review/acab9271caa0636a51999e66651876b5c291f15c631ac3141e313abae0620aa8/).
## Images
![Most dissimilar reviews.](images/dissimilar.png)
![Most similar reviews.](images/similar.png)
![Review similarity matrix.](images/matrix.png)## Usage
1. Setup the virtual environment.
```bash
python -m venv venv
```2. Activate the virtual environment.
- Windows:
```shell
venv\Scripts\activate
```- Unix or MacOS:
```bash
source venv/bin/activate
```3. Install the requirements.
```bash
pip install -r requirements.txt
```4. Run the main script.
```bash
python sentiment_analysis.py
```
(Optional) run the notebook.
```bash
jupyter nbconvert --execute --to notebook --inplace notebooks/sentiment_analysis.ipynb
```## A Note from the Author
Thanks for your interest! Please see my [GitHub](https://github.com/ianhaggerty) or [Linkedin](https://www.linkedin.com/in/ihaggerty/) to stay updated.