Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ianisdev/ca_ms_ai_data_analytics
Continuous Assessment MSCAI - Data Analytics
https://github.com/ianisdev/ca_ms_ai_data_analytics
jupyter-notebook matplotlib numpy pandas python3 sklearn
Last synced: 12 days ago
JSON representation
Continuous Assessment MSCAI - Data Analytics
- Host: GitHub
- URL: https://github.com/ianisdev/ca_ms_ai_data_analytics
- Owner: iAnisdev
- License: mit
- Created: 2024-11-05T19:48:31.000Z (13 days ago)
- Default Branch: main
- Last Pushed: 2024-11-05T20:07:52.000Z (13 days ago)
- Last Synced: 2024-11-05T21:19:53.219Z (13 days ago)
- Topics: jupyter-notebook, matplotlib, numpy, pandas, python3, sklearn
- Language: Jupyter Notebook
- Homepage:
- Size: 123 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Data Analysis Continuous Assessment
## Overview
This project involves a comprehensive analysis of a dataset, focusing on data characteristics, manipulation, preprocessing, visualization, and machine learning applications. The goal is to extract insights and build a predictive model based on the processed data.
## Data Characteristics
### 1.1 Data Population (3 points)
- **Total number of records**: [insert total]
- **Number of missing values**: [insert total]
- **Population distribution**: [insert summary]### 1.2 Data Attributes (4 points)
- **Attribute 1**: [description]
- **Attribute 2**: [description]
- **Attribute 3**: [description]
- **Attribute 4**: [description]### 1.3 Types of Attributes (4 points)
- **Numerical**: [insert attributes]
- **Categorical**: [insert attributes]
- **Ordinal**: [insert attributes]
- **Binary**: [insert attributes]## Data Manipulation
### 2.1 Missing Values / Categorical Data (10 points)
- **Technique Applied**: [insert technique, e.g., imputation, encoding]
- **Summary**: [brief summary of results]### 2.2 Detecting and Removing Outliers (10 points)
- **Technique Applied**: [insert technique, e.g., Z-score, IQR method]
- **Summary**: [brief summary of results]## Data Preprocessing
### 3.1 Scaling / Normalization Techniques (10 points)
- **Technique Applied**: [insert technique, e.g., Min-Max scaling, Standardization]
- **Summary**: [brief summary of results]### 3.2 Feature Selection (10 points)
- **Technique Applied**: [choose one from the list]
- Univariate Feature Selection
- Tree-based Feature Selection
- Greedy Feature Selection
- **Summary**: [brief summary of results]## Data Visualization
### 4.1 Graph 1: [Graph Type from Top Group] (10 points)
- **Description**: [insert description]
- **Summary**: [brief summary of findings]### 4.2 Graph 2: [Graph Type from Middle Group] (10 points)
- **Description**: [insert description]
- **Summary**: [brief summary of findings]### 4.3 Graph 3: [Graph Type from Bottom Group] (10 points)
- **Description**: [insert description]
- **Summary**: [brief summary of findings]## Machine Learning Use Cases
### 5.1 ML Algorithm Proposal (5 points)
- **Proposed Algorithm**: [insert algorithm name]
- **Reason for Selection**: [brief explanation]### 5.2 ML Algorithm Implementation (10 points)
- **Implementation Summary**: [insert details of the implementation process]### 5.3 ML Model Performance Report (5 points)
- **Performance Metrics**: [insert metrics, e.g., accuracy, precision, recall]
- **Summary**: [brief summary of performance results]