Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/iankitnegi/datapy
Welcome to DATAPy! This repo contains my Python coding projects for data science, featuring data manipulation, analysis, and visualization. Stay tuned for updates and new content!
https://github.com/iankitnegi/datapy
basic-programming matplotlib numpy pandas python seaborn
Last synced: 13 days ago
JSON representation
Welcome to DATAPy! This repo contains my Python coding projects for data science, featuring data manipulation, analysis, and visualization. Stay tuned for updates and new content!
- Host: GitHub
- URL: https://github.com/iankitnegi/datapy
- Owner: iankitnegi
- Created: 2024-05-27T04:54:17.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-08-17T17:22:18.000Z (5 months ago)
- Last Synced: 2024-08-17T20:12:28.863Z (5 months ago)
- Topics: basic-programming, matplotlib, numpy, pandas, python, seaborn
- Language: Jupyter Notebook
- Homepage:
- Size: 1.34 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# DataPy
Welcome to DATAPy! This repo contains my Python learning from basic to data science, featuring basic programming, logic building, data manipulation, analysis, and visualization. Stay tuned for updates and new content!### **Learning/Quick-Notes:**
- #Use of random module
import random
r = random.randint(1, 10)
print(r)- #Use of calendar module
import calendar
y = int(input("Enter the year: "))
m = int(input("Enter the month: "))
c = calendar.month(y, m)
print(c)- #Use of math module
import math
print(math.sqrt(25))- #Use of format() funn
print("{0} is Prime number".format(n))- #Binary, Octal, Hexadecimal funn: convert decimal -> binary, octal, hexadecimal
bin(), oct(), hex()- #ASCII: Character -> ASCII number {funn}
ord()- # Data Collection
data = []
data.extend([10, 20, 30, 40, 50])# Data Cleaning
if 30 in data:
data.remove(30)# Data Transformation
data.sort()
data.reverse()# Data Summarization
total = sum(data)
max_value = max(data)
min_value = min(data)# Preparing for Visualization
indexed_data = list(enumerate(data))print("Cleaned Data:", data)
print("Total:", total)
print("Max Value:", max_value)
print("Min Value:", min_value)
print("Indexed Data:", indexed_data)