Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ibalazevic/HypER

Hypernetwork Knowledge Graph Embeddings
https://github.com/ibalazevic/HypER

Last synced: 3 months ago
JSON representation

Hypernetwork Knowledge Graph Embeddings

Awesome Lists containing this project

README

        

## HypER: Hypernetwork Knowledge Graph Embeddings



This codebase contains PyTorch implementation of the paper:

> Hypernetwork Knowledge Graph Embeddings.
> Ivana Balažević, Carl Allen, and Timothy M. Hospedales.
> International Conference on Artificial Neural Networks, 2019.
> [[Paper]](https://arxiv.org/pdf/1808.07018.pdf)

### Running a model

To run the model, execute the following command:

`CUDA_VISIBLE_DEVICES=0 python hyper.py --algorithm HypER --dataset FB15k-237`

Available algorithms are:

HypER
HypE
DistMult
ComplEx
ConvE

Available datasets are:

FB15k-237
WN18RR
FB15k
WN18

To reproduce the results from the paper, use the following combinations of hyperparameters with `batch_size=128`, `ent_vec_dim=200` and `rel_vec_dim=200`:

dataset | lr | dr | input_dropout | feature_map_dropout | hidden_dropout | label_smoothing
:--- | :---: | :---: | :---: | :---: | :---: | :---: |
FB15k | 0.005 | 0.995 | 0.2 | 0.2 | 0.3 | 0.
WN18 | 0.001 | 1.0 | 0.2 | 0.2 | 0.3 | 0.1
FB15k-237 | 0.0001 | 0.995 | 0.3 | 0.2 | 0.3 | 0.1
WN18RR | 0.005 | 1.0 | 0.2 | 0.2 | 0.3| 0.1

### Requirements

The codebase is implemented in Python 3.6.6. Required packages are:

numpy 1.14.5
pytorch 0.4.0

### Citation

If you found this codebase useful, please cite:

@inproceedings{balazevic2019hypernetwork,
title={Hypernetwork Knowledge Graph Embeddings},
author={Bala\v{z}evi\'c, Ivana and Allen, Carl and Hospedales, Timothy M},
booktitle={International Conference on Artificial Neural Networks},
year={2019}
}