Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ibalazevic/HypER
Hypernetwork Knowledge Graph Embeddings
https://github.com/ibalazevic/HypER
Last synced: 4 days ago
JSON representation
Hypernetwork Knowledge Graph Embeddings
- Host: GitHub
- URL: https://github.com/ibalazevic/HypER
- Owner: ibalazevic
- License: mit
- Created: 2018-05-16T19:22:41.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-09-21T08:16:58.000Z (about 5 years ago)
- Last Synced: 2024-08-01T22:42:04.078Z (3 months ago)
- Language: Python
- Homepage:
- Size: 13.2 MB
- Stars: 53
- Watchers: 6
- Forks: 9
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-network-embedding - [Python PyTorch
README
## HypER: Hypernetwork Knowledge Graph Embeddings
This codebase contains PyTorch implementation of the paper:
> Hypernetwork Knowledge Graph Embeddings.
> Ivana Balažević, Carl Allen, and Timothy M. Hospedales.
> International Conference on Artificial Neural Networks, 2019.
> [[Paper]](https://arxiv.org/pdf/1808.07018.pdf)### Running a model
To run the model, execute the following command:
`CUDA_VISIBLE_DEVICES=0 python hyper.py --algorithm HypER --dataset FB15k-237`
Available algorithms are:
HypER
HypE
DistMult
ComplEx
ConvEAvailable datasets are:
FB15k-237
WN18RR
FB15k
WN18To reproduce the results from the paper, use the following combinations of hyperparameters with `batch_size=128`, `ent_vec_dim=200` and `rel_vec_dim=200`:
dataset | lr | dr | input_dropout | feature_map_dropout | hidden_dropout | label_smoothing
:--- | :---: | :---: | :---: | :---: | :---: | :---: |
FB15k | 0.005 | 0.995 | 0.2 | 0.2 | 0.3 | 0.
WN18 | 0.001 | 1.0 | 0.2 | 0.2 | 0.3 | 0.1
FB15k-237 | 0.0001 | 0.995 | 0.3 | 0.2 | 0.3 | 0.1
WN18RR | 0.005 | 1.0 | 0.2 | 0.2 | 0.3| 0.1### Requirements
The codebase is implemented in Python 3.6.6. Required packages are:
numpy 1.14.5
pytorch 0.4.0### Citation
If you found this codebase useful, please cite:
@inproceedings{balazevic2019hypernetwork,
title={Hypernetwork Knowledge Graph Embeddings},
author={Bala\v{z}evi\'c, Ivana and Allen, Carl and Hospedales, Timothy M},
booktitle={International Conference on Artificial Neural Networks},
year={2019}
}