Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/icon-lab/I2I-Mamba
Official implementation of I2I-Mamba, an image-to-image translation model based on selective state spaces
https://github.com/icon-lab/I2I-Mamba
artificial-intelligence deeplearning image-synthesis image-to-image-translation mamba mamba-state-space-models medical multi-modal neural-networks pytorch ssm
Last synced: 3 months ago
JSON representation
Official implementation of I2I-Mamba, an image-to-image translation model based on selective state spaces
- Host: GitHub
- URL: https://github.com/icon-lab/I2I-Mamba
- Owner: icon-lab
- Created: 2024-05-22T12:11:39.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-09-10T07:37:01.000Z (4 months ago)
- Last Synced: 2024-09-10T09:55:48.260Z (4 months ago)
- Topics: artificial-intelligence, deeplearning, image-synthesis, image-to-image-translation, mamba, mamba-state-space-models, medical, multi-modal, neural-networks, pytorch, ssm
- Language: Python
- Homepage:
- Size: 229 KB
- Stars: 51
- Watchers: 2
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-state-space-models - GitHub
README
I2I-Mamba
Multi-modal medical image synthesis via selective state space modeling
Omer F. Atli1,2 ·
Bilal Kabas1,2 ·
Fuat Arslan1,2 ·
Mahmut Yurt3 ·
Onat Dalmaz3 ·
Tolga Çukur1,2
1Bilkent University 2UMRAM 3Stanford University
[arXiv]
Official PyTorch implementation of **I2I-Mamba**, a novel adversarial model for multi-modal medical image synthesis that leverages selective state space modeling (SSM) to efficiently capture long-range context while maintaining local precision. I2I-Mamba injects channel-mixed Mamba (cmMamba) blocks in the bottleneck of a convolutional backbone. In cmMamba blocks, SSM layers are used to learn context across the spatial dimension and channel-mixing layers are used to learn context across the channel dimension of feature maps.
![architecture](figures/architecture.png)
## Dependencies
```
python>=3.8.13
cuda=>11.6torch>=2.2
torchvision>=0.17
visdom
dominate
scikit-image
h5py
scipy
ml_collections
mamba-ssm==1.1.3
```
You are welcome to ask any library issues.## Dataset
To reproduce the results reported in the paper, we recommend the following dataset processing steps:Sequentially select subjects from the dataset.
Apply skull-stripping to 3D volumes.
Select 2D cross-sections from each subject.
Normalize the selected 2D cross-sections before training and before metric calculation.You should structure your aligned dataset in the following way:
```
/datasets/IXI/
├── T1_T2
│ ├── train
| - 1.png
| - 2.png
| - ...
│ ├── val
│ └── test
├── T2_PD
│ ├── train
│ └── ...
├── T1_PD__T2
│ ├── train
│ └── ...
```x.png is a single image containing both source and target image side-by-side. Thus the resulting image for one-to-one task will be 512 pixels horizontally and 256 pixels vertically and for many-to-one task it will be 768 pixels horizontally and 256 pixels vertically.
Note that for many-to-one tasks, source modalities should be in the Red and Green channels.
## Training
### Commands
1. One-to-one training, e.g. T2->PD
```
python3 train.py --dataroot datasets/IXI/T2_PD/ --name ixi_t2__pd --gpu_ids 0 --model i2i_mamba_one --which_model_netG i2i_mamba --which_direction AtoB --lambda_A 100 --dataset_mode aligned --norm batch --pool_size 0 --output_nc 1 --input_nc 1 --loadSize 256 --fineSize 256 --niter 30 --niter_decay 30 --save_epoch_freq 5 --checkpoints_dir checkpoints/ --display_id 0 --lr 0.0002
```2. Many-to-one training, e.g. T1,T2->PD
```
python3 train.py --dataroot datasets/IXI/T1_T2__PD/ --name ixi_t1_t2__pd --gpu_ids 0 --model i2i_mamba_many --which_model_netG i2i_mamba --which_direction AtoB --lambda_A 100 --dataset_mode aligned --norm batch --pool_size 0 --output_nc 1 --input_nc 3 --loadSize 256 --fineSize 256 --niter 30 --niter_decay 30 --save_epoch_freq 5 --checkpoints_dir checkpoints/ --display_id 0 --lr 0.0002
```### Argument descriptions
| Argument | Description |
|---------------------|-----------------------------------------------------------------------------|
| `--dataroot` | Root directory path of the dataset. |
| `--name` | Name of the experiment, used for storing model checkpoints and results. |
| `--gpu_ids` | List of GPU IDs to use for training (e.g., 0 for the first GPU). |
| `--model` | Model type to use for training. |
| `--which_model_netG`| Specifies the generator architecture to use. |
| `--which_direction` | Direction of the image translation, e.g., AtoB or BtoA. |
| `--lambda_A` | Weight for cycle consistency loss from domain A to B and back to A. |
| `--dataset_mode` | Dataset loading mode, specifying how the dataset is loaded (e.g., aligned). |
| `--norm` | Normalization type used in the model, e.g., batch normalization. |
| `--pool_size` | Size of the image buffer that stores previously generated images. |
| `--output_nc` | Number of output image channels. |
| `--input_nc` | Number of input image channels. |
| `--loadSize` | Scale images to this size before cropping. |
| `--fineSize` | Crop images to this size for training. |
| `--niter` | Number of iterations with the initial learning rate. |
| `--niter_decay` | Number of iterations to linearly decay the learning rate to zero. |
| `--save_epoch_freq` | Frequency of saving checkpoints at the end of epochs. |
| `--checkpoints_dir` | Directory where model checkpoints are saved. |
| `--display_id` | ID of the display window for visualizing training results (0 to disable). |
| `--lr` | Initial learning rate for the optimizer. |## Testing
### Commands
1. One-to-one testing, e.g. T2->PD```
python3 test.py --dataroot datasets/IXI/T2_PD/ --name ixi_t2__pd --gpu_ids 0 --model i2i_mamba_one --which_model_netG i2i_mamba --dataset_mode aligned --norm batch --phase test --output_nc 1 --input_nc 1 --how_many 10000 --serial_batches --fineSize 256 --loadSize 256 --results_dir results/ --checkpoints_dir checkpoints/ --which_epoch 60
```2. Many-to-one testing, e.g. T1,T2->PD
```
python3 test.py --dataroot datasets/IXI/T1_T2__PD/ --name T2_PD_T1_mambaoffTekrar_nonorm --gpu_ids 0 --model i2i_mamba_many --which_model_netG i2i_mamba --dataset_mode aligned --norm batch --phase test --output_nc 1 --input_nc 3 --how_many 10000 --serial_batches --fineSize 256 --loadSize 256 --results_dir results/ --checkpoints_dir checkpoints/ --which_epoch 60
```### Argument descriptions
| Argument | Description |
|---------------------|-----------------------------------------------------------------------------|
| `--results_dir` | Directory where test results are saved. |
| `--serial_batches` | If set, takes images in order to make batches, otherwise takes them randomly.|
| `--how_many` | Number of test images to run. |
| `--which_epoch` | Which epoch to load? Set to 'latest' to use the latest cached model. |## Citation
You are encouraged to modify/distribute this code. However, please acknowledge this code and cite the paper appropriately.
```
@article{atli2024i2imamba,
title={I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling},
author={Omer F. Atli and Bilal Kabas and Fuat Arslan and Mahmut Yurt and Onat Dalmaz and Tolga Çukur},
year={2024},
journal={arXiv:2405.14022}
}
```
For any questions, comments and contributions, please feel free to contact Omer Faruk Atli (faruk.atli[at]bilkent.edu.tr)## Acknowledgments
This code uses libraries from [ResViT](https://github.com/icon-lab/ResViT) and [mamba](https://github.com/state-spaces/mamba) repository.
Copyright © 2024, ICON Lab.