An open API service indexing awesome lists of open source software.

https://github.com/icon-lab/mambaroll

Official implementation of MambaRoll: A Physics-Driven Autoregressive State Space Model for Medical Image Reconstruction (https://arxiv.org/abs/2412.09331)
https://github.com/icon-lab/mambaroll

autoregressive deep-learning deep-neural-networks image-reconstruction mamba medical-imaging next-scale-prediction python pytorch sequence-models state-space-models unrolled-reconstruction-algorithm

Last synced: about 1 month ago
JSON representation

Official implementation of MambaRoll: A Physics-Driven Autoregressive State Space Model for Medical Image Reconstruction (https://arxiv.org/abs/2412.09331)

Awesome Lists containing this project

README

        




MambaRoll

Physics-Driven Autoregressive State Space Models for Medical Image Reconstruction


Bilal Kabas1,2·
Fuat Arslan1,2·
Valiyeh A. Nezhad1,2·
Saban Ozturk1,2·
Emine U. Saritas1,2·
Tolga Çukur1,2



1Bilkent University   2UMRAM



[arXiv]

Official PyTorch implementation of **MambaRoll**, a novel physics-driven autoregressive state space model for enhanced fidelity in medical image reconstruction. In each cascade of an unrolled architecture, MambaRoll employs an autoregressive framework based on physics-driven state space modules (PSSM), where PSSMs efficiently aggregate contextual features at a given spatial scale while maintaining fidelity to acquired data, and autoregressive prediction of next-scale feature maps from earlier spatial scales enhance capture of multi-scale contextual features


architecture

## ⚙️ Installation

This repository has been developed and tested with `CUDA 12.2` and `Python 3.12`. Below commands create a conda environment with required packages. Make sure conda is installed.

```
conda env create --file requirements.yaml
conda activate mambaroll
```

[Optional] Setting Up Faster and Memory-efficient Radon Transform

We use a faster (over 100x) and memory-efficient (~4.5x) implementation of Radon transform ([torch-radon](https://github.com/matteo-ronchetti/torch-radon)). To install, run commands below within `mambaroll` conda environment.

```
git clone https://github.com/matteo-ronchetti/torch-radon.git
cd torch-radon
python setup.py install
```

## 🗂️ Prepare dataset

MambaRoll supports reconstructions for MRI and CT modalities. Therefore, we have two dataset classes: (1) `MRIDataset` and (2) `CTDataset` in `datasets.py`.

### 1. MRI dataset folder structure

MRI dataset has subfolders for each undersampling rate, e.g. us4x, us8x, etc. There is a separate `.npz` file for each contrast.

Details for npz files


A `.npz` file has the following keys:

| Variable key | Description | Shape |
|-----------------|-------------------------------------------|-------------------------------------------|
| `image_fs` | Coil-combined fully-sampled MR image. | n_slices x 1 x height x width |
| `image_us` | Multi-coil undersampled MR image. | n_slices x n_coils x height x width |
| `us_masks` | K-space undersampling masks. | n_slices x 1 x height x width |
| `coilmaps` | Coil sensitivity maps. | n_slices x n_coils x height x width |
| `subject_ids` | Corresponding subject ID for each slice. | n_slices |
| `us_factor` | Undersampling factor. | (Single integer value) |

```
fastMRI/
├── us4x/
│ ├── train/
│ │ ├── T1.npz
│ │ ├── T2.npz
│ │ └── FLAIR.npz
│ ├── test/
│ │ ├── T1.npz
│ │ ├── T2.npz
│ │ └── FLAIR.npz
│ └── val/
│ ├── T1.npz
│ ├── T2.npz
│ └── FLAIR.npz
├── us8x/
│ ├── train/...
│ ├── test/...
│ └── val/...
├── ...
```

### 2. CT dataset folder structure

Each split in CT dataset contains images with different undersampling rates.

Details for npz files

`image_fs.npz` files have the fully-sampled data with the following key:

| Variable key | Description | Shape |
|-----------------|-------------------------------------------|-------------------------------------------|
| `image_fs` | Fully-sampled CT image. | n_slices x 1 x height x width |

A `usx.npz` file has the following keys:

| Variable key | Description | Shape |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| `image_us` | Undersampled CT image. | n_slices x 1 x height x width |
| `sinogram_us` | Corresponding sinograms for undersampled CTs. | n_slices x 1 x detector_positions x n_projections |
| `projection_angles` | Projection angles in degrees at which the Radon transform performed on fully-sampled images to obtain undersampled ones. | n_slices x n_projections |
| `subject_ids` | Corresponding subject ID for each slice. | n_slices |
| `us_factor` | Undersampling factor. | (Single integer value) |

```
lodopab-ct/
├── train/
│ ├── image_fs.npz
│ ├── us4x.npz
│ └── us6x.npz
├── test/
│ ├── image_fs.npz
│ ├── us4x.npz
│ └── us6x.npz
└── val/
├── image_fs.npz
├── us4x.npz
└── us6x.npz
```

## 🏃 Training

Run the following command to start/resume training. Model checkpoints are saved under `logs/$EXP_NAME/MambaRoll/checkpoints` directory, and sample validation images are saved under `logs/$EXP_NAME/MambaRoll/val_samples`. The script supports both single and multi-GPU training. By default, it runs on a single GPU. To enable multi-GPU training, set `--trainer.devices` argument to the list of devices, e.g. `0,1,2,3`. Be aware that multi-GPU training may lead to convergence issues. Therefore, it is only recommended during inference/testing.

```
python main.py fit \
--config $CONFIG_PATH \
--trainer.logger.name $EXP_NAME \
--model.mode $MODE \
--data.dataset_dir $DATA_DIR \
--data.contrast $CONTRAST \
--data.us_factor $US_FACTOR \
--data.train_batch_size $BS_TRAIN \
--data.val_batch_size $BS_VAL \
[--trainer.max_epoch $N_EPOCHS] \
[--ckpt_path $CKPT_PATH] \
[--trainer.devices $DEVICES]

```

Example Commands

MRI reconstruction using fastMRI dataset:

```
python main.py fit \
--config configs/config_fastmri.yaml \
--trainer.logger.name fastmri_t1_us8x \
--data.dataset_dir ../datasets/fastMRI \
--data.contrast T1 \
--data.us_factor 8 \
--data.train_batch_size 1 \
--data.val_batch_size 16 \
--trainer.devices [0]
```

CT reconstruction using [LoDoPaB-CT](https://zenodo.org/records/3384092) dataset:

```
python main.py fit \
--config configs/config_ct.yaml \
--trainer.logger.name ct_us4x \
--data.dataset_dir ../datasets/lodopab-ct/ \
--data.us_factor 4 \
--data.train_batch_size 1 \
--data.val_batch_size 16 \
--trainer.devices [0]
```

### Argument descriptions

| Argument | Description |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| `--config` | Config file path. Available config files: 'configs/config_mri.yaml' and 'configs/config_ct.yaml' |
| `--trainer.logger.name` | Experiment name. |
| `--model.mode` | Mode depending on data modality. Options: 'mri', 'ct'. |
| `--data.dataset_dir` | Data set directory. |
| `--data.contrast` | Source contrast, e.g. 'T1', 'T2', ... for MRI. Should match the folder name for that contrast. |
| `--data.us_factor` | Undersampling factor, e.g 4, 8. |
| `--data.train_batch_size` | Train set batch size. |
| `--data.val_batch_size` | Validation set batch size. |
| `--trainer.max_epoch` | [Optional] Number of training epochs (default: 50). |
| `--ckpt_path` | [Optional] Model checkpoint path to resume training. |
| `--trainer.devices` | [Optional] Device or list of devices. For multi-GPU set to the list of device ids, e.g `0,1,2,3` (default: `[0]`). |

## 🧪 Testing

Run the following command to start testing. The predicted images are saved under `logs/$EXP_NAME/MambaRoll/test_samples` directory. By default, the script runs on a single GPU. To enable multi-GPU testing, set `--trainer.devices` argument to the list of devices, e.g. `0,1,2,3`.

```
python main.py test \
--config $CONFIG_PATH \
--model.mode $MODE \
--data.dataset_dir $DATA_DIR \
--data.contrast $CONTRAST \
--data.us_factor $US_FACTOR \
--data.test_batch_size $BS_TEST \
--ckpt_path $CKPT_PATH
```

### Argument descriptions

Some arguments are common to both training and testing and are not listed here. For details on those arguments, please refer to the training section.

| Argument | Description |
|-----------------------------|--------------------------------------------|
| `--data.test_batch_size` | Test set batch size. |
| `--ckpt_path` | Model checkpoint path. |

## ✒️ Citation
You are encouraged to modify/distribute this code. However, please acknowledge this code and cite the paper appropriately.
```
@article{kabas2024mambaroll,
title={Physics-Driven Autoregressive State Space Models for Medical Image Reconstruction},
author={Bilal Kabas and Fuat Arslan and Valiyeh A. Nezhad and Saban Ozturk and Emine U. Saritas and Tolga Çukur},
year={2024},
journal={arXiv:2412.09331}
}
```

### 💡 Acknowledgments

This repository uses code from the following projects:

- [mamba](https://github.com/state-spaces/mamba)
- [deepinv](https://github.com/deepinv/deepinv)



Copyright © 2024, ICON Lab.