Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ihsandevs/captcha-recognizer
https://github.com/ihsandevs/captcha-recognizer
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/ihsandevs/captcha-recognizer
- Owner: IhsanDevs
- License: apache-2.0
- Created: 2023-11-26T20:15:13.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-11-26T20:15:16.000Z (about 1 year ago)
- Last Synced: 2024-12-24T08:13:59.101Z (about 2 months ago)
- Language: Python
- Size: 22.5 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Introduce
=========
Image recognition captchas using TensorFlow, no need image segmentation, run on Ubuntu 18.04, Python 3.10, Tensorflow 2.10.0, Numpy 1.23.4
Accuracy is directly related to generated Training data size and the Learning steps number.
For example,
captcha generator: https://github.com/Gregwar/CaptchaBundle
Dependence
==========
### python 2.7
### Anaconda2 4.3.1
https://www.continuum.io/downloads#linux
### TensorFlow 1.1
https://github.com/tensorflow/tensorflow
### captcha
https://pypi.python.org/pypi/captcha/0.1.1Usage
=====
## 1.prepare captchas
put your own captchas in **/data/train_data/** for training, **/data/valid_data/** for evaluating and **/data/test_data/** for recognize testing, images file name must be **label_\*.jpg** or **label_\*.png** and recommend size **128x48**. you can also use default generation:
```
python captcha_gen_default.py
```## 2.convert dataset to tfrecords
the result file will be **/data/train.tfrecord** and **/data/valid.tfrecord**
```
python captcha_records.py
```## 3.training
train and evaluate neural network on CPU or one single GPU
```
python captcha_train.py
```
you can also train over multiple GPUs
```
python captcha_multi_gpu_train.py
```## 4.evaluate
```
python captcha_eval.py
```## 5.recognize
read captchas from **/data/test_data/** for recogition
```
python captcha_recognize.py
```
result like this
```
...
image WFPMX_num552.png recognize ----> 'WFPMX'
image QUDKM_num468.png recognize ----> 'QUDKM'
```