Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ikostrikov/tensorflow-vae-gan-draw
A collection of generative methods implemented with TensorFlow (Deep Convolutional Generative Adversarial Networks (DCGAN), Variational Autoencoder (VAE) and DRAW: A Recurrent Neural Network For Image Generation).
https://github.com/ikostrikov/tensorflow-vae-gan-draw
draw gan recurrent-neural-networks tensorflow vae
Last synced: 2 days ago
JSON representation
A collection of generative methods implemented with TensorFlow (Deep Convolutional Generative Adversarial Networks (DCGAN), Variational Autoencoder (VAE) and DRAW: A Recurrent Neural Network For Image Generation).
- Host: GitHub
- URL: https://github.com/ikostrikov/tensorflow-vae-gan-draw
- Owner: ikostrikov
- License: apache-2.0
- Created: 2015-12-25T03:58:50.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2017-04-18T20:49:55.000Z (over 7 years ago)
- Last Synced: 2023-10-20T20:19:45.992Z (about 1 year ago)
- Topics: draw, gan, recurrent-neural-networks, tensorflow, vae
- Language: Python
- Homepage:
- Size: 32.2 KB
- Stars: 597
- Watchers: 32
- Forks: 172
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# TF-VAE-GAN-DRAW
TensorFlow implementation of [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/pdf/1511.06434.pdf), [Variational Autoencoder (also Deep and Convolutional)](http://arxiv.org/pdf/1312.6114v10.pdf) and [DRAW: A Recurrent Neural Network For Image Generation](http://arxiv.org/pdf/1502.04623v2.pdf).
## Run
VAE/GAN:
```bash
python main.py --working_directory /tmp/gan --model vae
```DRAW:
```bash
python main-draw.py --working_directory /tmp/gan
```Deep Convolutional Generative Adversarial Networks produce decent results after 10 epochs using default parameters.
###TODO:
- [ ] More complex data.
- [ ] Add [Adversarial Autoencoder](http://arxiv.org/pdf/1511.05644.pdf)
- [ ] Replace current attention mechanism with Spatial Transformer Layer