Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ilex-paraguariensis/bombilla
A JSON format to create and organize Python objects
https://github.com/ilex-paraguariensis/bombilla
configuration execution
Last synced: 17 days ago
JSON representation
A JSON format to create and organize Python objects
- Host: GitHub
- URL: https://github.com/ilex-paraguariensis/bombilla
- Owner: ilex-paraguariensis
- License: mit
- Created: 2022-09-24T18:01:24.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2022-11-17T15:03:39.000Z (almost 2 years ago)
- Last Synced: 2024-10-09T12:53:56.771Z (28 days ago)
- Topics: configuration, execution
- Language: Python
- Homepage:
- Size: 248 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# What is Bombilla?
Bombilla is a configuration format for describing python objects and executions in plain json. Bombilla is compatible with any python framework, e.g pytorch lightning, keras and jax. You can use bombilla to define an experiment with a json file, and then execute it.
# Installation
bombilla can be installed with pip:
```bash
pip install bomba
```# API
Example of using bombilla API:
```python
from bombilla import Bombillabombilla = Bombilla(bombilla_object_descriptor_dict)
# parses dict and loads modules, does not executes anything yet
bombilla.load()# executes everything in the dictionary, creates objects
bombilla.execute()# you can pass argument if you want to execute a function on a specific object (e.g. train a model)
bombilla.execute_method("trainer", "fit", *args, **kwargs)
# you can get the object by key
bombilla.find("resnet")
```## Object descriptor format
An object descriptor is a dictionary that describes python objects and executions.
The dictionary can contain the following keys:
* `module`: the python module where the object is defined
* `class_name`: the name of the class
* `object_key`: the key of the object for dynamic referencing
* `params`: the parameters for creating the object
* `function`: the function to be executed
* `method_args`: arguments for calling a specific method on an object**Note that all the arguments are directly passed to the object constructor, so you can use any argument that is accepted by the function's singnature.**
For example, here an object is described from `torchvision.models` python module, and used to load a pre-trained resnet.
```
"resnet":{
"module":"torchvision.models",
"class_name":"resnet18",
"object_key":"resnet",
"params":{
"pretrained":true
}
}```
Or a simple jax execution configuration file that executes a function:
```
{
"data": {
"module": "data_loader.datasets",
"function": "mnist",
"object_key": "data",
"params": {
"permute_train": true
}
},
"train_function": {
"module": "trainers.mnist_classifier",
"function": "train",
"params": {
"datasets": "{data}",
"step_size": 0.001,
"num_epochs": 10,
"batch_size": 128,
"momentum_mass": 0.9
}
}
}
```Or you can call methods on objects:
```
{
"data": {
"module": "data_loaders.cifar10.data_loader",
"function": "get_train_data_loader",
"object_key": "data",
"params": {
"batch_size": 128
}
},
"trainer": {
"module": "modules.resnet.resnet",
"function": "get_model",
"params": {
"input_shape": [
180,
180,
3
],
"num_classes": 2
},
"object_key": "model",
"method_args": [
{
"function": "compile",
"params": {
"optimizer": {
"module": "tensorflow.keras.optimizers",
"class_name": "Adam",
"params": {
"learning_rate": 0.001
}
},
"loss": "binary_crossentropy",
"metrics": [
"accuracy"
]
}
},
{
"function": "fit",
"params": {
"": "{data}",
"epochs": 10
}
}
]
}
}
```And describe a nested dictionary of any depth:
```
{
"data": {
"module": "data_loaders.cifar10.data_loader",
"class_name": "CifarLightningDataModule",
"object_key": "data",
"params": {
"location": "./data/cifar10",
"batch_size": 128,
"image_size": [
256,
256
],
"crop_size": 4
}
},
"pytorch_lightning_module": {
"module": "base_classification",
"class_name": "LightningClassificationModule",
"object_key": "pl_model",
"params": {
"classifier": {
"module": "modules.resnet.resnet",
"object_key": "classifier",
"class_name": "ResNet",
"params": {
"block": "BasicBlock",
"layers": [
3,
4,
6,
3
],
"num_classes": 10,
"in_channels": 3,
"zero_init_residual": false,
"groups": 1,
"width_per_group": 64,
"replace_stride_with_dilation": [
false,
false,
false
],
"norm_layer": "BatchNorm2d"
}
},
"optimizers": {
"optimizer": {
"module": "torch.optim",
"class_name": "Adam",
"object_key": "optimizer",
"params": {
"lr": 0.0004,
"betas": [
0.5,
0.999
],
"params": {
"function_call": "parameters",
"reference_key": "classifier",
"params": {}
}
}
},
"lr_scheduler": {
"monitor": "val_loss",
"scheduler": {
"module": "torch.optim.lr_scheduler",
"class_name": "ReduceLROnPlateau",
"params": {
"optimizer": "{optimizer}",
"mode": "min",
"factor": 0.5,
"threshold": 1e-08,
"threshold_mode": "rel",
"patience": 0,
"verbose": true
}
}
}
}
}
},
"trainer": {
"module": "pytorch_lightning",
"class_name": "Trainer",
"params": {
"gpus": 1,
"max_epochs": 100,
"precision": 16,
"gradient_clip_val": 0.5,
"enable_checkpointing": true,
"callbacks": [
{
"module": "pytorch_lightning.callbacks",
"class_name": "EarlyStopping",
"params": {
"monitor": "val_loss",
"patience": 10,
"mode": "min"
}
},
{
"module": "pytorch_lightning.callbacks",
"class_name": "ModelCheckpoint",
"params": {
"dirpath": "{save_dir}/checkpoints",
"monitor": "val_loss",
"save_top_k": 1,
"verbose": true,
"save_last": true,
"mode": "min"
}
}
],
"logger": {
"module": "pytorch_lightning.loggers",
"class_name": "CSVLogger",
"params": {
"save_dir": "./logs"
}
}
},
"method_args": [
{
"function": "fit",
"params": {
"model": "{pl_model}",
"datamodule": "{data}"
}
},
{
"function": "test",
"params": {
"model": "{pl_model}",
"datamodule": "{data}"
}
}
]
}
}
```