https://github.com/image-py/planer-zoo
toolbox of planer
https://github.com/image-py/planer-zoo
Last synced: 6 months ago
JSON representation
toolbox of planer
- Host: GitHub
- URL: https://github.com/image-py/planer-zoo
- Owner: Image-Py
- License: bsd-3-clause
- Created: 2021-04-29T08:41:26.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2022-03-06T17:05:31.000Z (over 3 years ago)
- Last Synced: 2024-09-17T09:54:33.790Z (about 1 year ago)
- Language: Python
- Size: 56.6 KB
- Stars: 4
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# planer-store
[Planer](https://github.com/Image-Py/planer) is a light-weight CNN framework implemented in pure Numpy-like interface. It can run only with Numpy. Or change different backends. (Cupy accelerated with CUDA, ClPy accelerated with OpenCL).
planer-store is a toolbox based on planer. Supportting many models, we can use them easily:
```python
import planer_store as plas
model = plas.load_model('xxx')
model.xxx ...
```
## crnn-ocr
```python
import planer_store as plas
model = plas.load_model('crnn_ocr')
img = imread('planer.jpg')
text = model.recognize(img)
# show img and result
```

## face-68-key
```python
import planer_store as plas
model = plas.load_model('face_68_key')
face = imread('face.jpg')
rc = model.get_face_key(face)
thin = model.face_adjust(face, fac=-10)
fat = model.face_adjust(face, fac=10)
# show face, thin, fat
```

## hed-edge
```python
import planer_store as plas
model = plas.load_model('hed_edge')
face = imread('edge.jpg')
edge = model.hed_edge(img)
# show face, edge
```

## object-recognize
```python
import planer_store as plas
model = plas.load_model('resnet18')
img = imread('bus.jpg')
obj = model.recognize(img)
# show img and result
```

## high-resolution
```python
import planer_store as plas
model = plas.load_model('ESRGAN')
img = imread('girl.jpg')
high = model.super_resolution(img)
# show img and high resolution result
```

## cellpose
```python
import planer_store as plas
model = plas.load_model('cellpose')
img = 255 - imread('cell.png')[:,:,0]
flow = count_flow(img)
lab = flow2msk(flow, level=0.2)
edge = draw_edge(img, lab)
rgb = rgb_mask(img, lab)
# show img, flow, edge, rgbmsk
```

## Contribution
welcom to contribute new models.
1. use torch to train, and export as onnx
2. planer.onnx2planer('xxx.onnx')