Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/inevitable-team/tfjs-mnist
An implementation of the MNIST neural network for use in backend ML systems.
https://github.com/inevitable-team/tfjs-mnist
ai ml mnist mnist-classifier npm-module npm-package tensorflowjs
Last synced: about 2 months ago
JSON representation
An implementation of the MNIST neural network for use in backend ML systems.
- Host: GitHub
- URL: https://github.com/inevitable-team/tfjs-mnist
- Owner: inevitable-team
- Created: 2019-12-11T10:48:01.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2023-12-19T17:00:04.000Z (about 1 year ago)
- Last Synced: 2023-12-20T11:43:20.780Z (about 1 year ago)
- Topics: ai, ml, mnist, mnist-classifier, npm-module, npm-package, tensorflowjs
- Language: JavaScript
- Homepage: https://www.npmjs.com/package/@inevitable/tfjs-mnist
- Size: 589 KB
- Stars: 0
- Watchers: 2
- Forks: 1
- Open Issues: 27
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
# TensorFlowJS Minst
An implementation of the MNIST neural network for use in backend ML systems.
## Example Usages
### Basic
To use this package and run it on the test data provided, the only code that needs to be wrote is:
```js
let config = {};
let mnistTester: new mnist(config);
await mnistTester.setup();
await mnistTester.train();
await mnistTester.evaluate();
console.table(mnistTester.prettyConfusionMatrix());
console.log("Accuracy: ", mnistTester.accuracy() + "%");
```Which will then display a result of:
```
┌────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┐
│ (index) │ "0" Prediction │ "1" Prediction │ "2" Prediction │ "3" Prediction │ "4" Prediction │ "5" Prediction │ "6" Prediction │ "7" Prediction │ "8" Prediction │ "9" Prediction │
├────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┤
│ "0" Actual │ 24 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
│ "1" Actual │ 0 │ 26 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
│ "2" Actual │ 0 │ 0 │ 23 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 0 │
│ "3" Actual │ 0 │ 0 │ 0 │ 28 │ 0 │ 0 │ 0 │ 1 │ 0 │ 0 │
│ "4" Actual │ 0 │ 0 │ 0 │ 0 │ 24 │ 0 │ 0 │ 0 │ 0 │ 1 │
│ "5" Actual │ 0 │ 0 │ 0 │ 0 │ 0 │ 26 │ 0 │ 0 │ 0 │ 0 │
│ "6" Actual │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 17 │ 0 │ 0 │ 0 │
│ "7" Actual │ 0 │ 0 │ 1 │ 0 │ 0 │ 0 │ 0 │ 25 │ 2 │ 1 │
│ "8" Actual │ 1 │ 0 │ 1 │ 0 │ 0 │ 2 │ 1 │ 0 │ 18 │ 0 │
│ "9" Actual │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 0 │ 0 │ 25 │
└────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┘
Accuracy: 94.4%
```### Use Model to Predict a new Image
Using the trained model from above, the following code can be added to see the prediction of a given image.
```js
let onePrediction = await mnistTester.predictOne(`${__dirname}/example_dataset/0/img_5.jpg`);
console.log("Predict One Prediction: ", onePrediction);
```Which will then log the following result:
```
Predict One Prediction: 0
```## Source Folder Structure
In the `imagesUrl` parameter you specify for the source folder, there are two acceptable structure, one where you can manually split the training and testing data, then another where it is randomly determined by the `split` parameter.
### Manual Split
```
example_dataset
+-- training
| +-- 0
| | +-- img_0.jpg
| | +-- img_2.jpg
| | +-- img_43.jpg
| +-- 1
| | +-- img_23.jpg
| | +-- img_76.jpg
| | +-- img_245.jpg
+-- testing
| +-- 0
| | +-- img_69.jpg
| | +-- img_66.jpg
| | +-- img_56.jpg
| +-- 1
| | +-- img_68.jpg
| | +-- img_58.jpg
```### Auto Split
```
example_dataset
+-- 0
| +-- img_67.jpg
| +-- img_57.jpg
| +-- img_33.jpg
| +-- img_13.jpg
+-- 1
| +-- img_34.jpg
| +-- img_56.jpg
| +-- img_23.jpg
```## Parameters
The `imagesUrl` has been mentioned to specify the source folder, but below are all of the possible parameters that can be used when instantiating a new mnist Object.
```js
let config: {
this.tf = config.tf || require("@tensorflow/tfjs-node"); // Optional: TF, enables the gpu package to be passed in
this.onlyTesting = config.onlyTesting || false; // Optional: Boolean, true if you want to test via other means and use the "predictOne" function
this.imageLimiter = config.imageLimiter || false; // Optional: Number, % of images to use, 0.9 turns 100 images to 90 images to use (then being split into training and testing data)
this.split = config.split || 0.75; // Optional: Float, vary the difference in training and testing data, 0.75 = 75% of the images will be used for training
this.oldModelImageSize = config.modelImageSize || 28; // Optional: Number, specify the input width/height of the old model
this.modelImageShape = [this.oldModelImageSize, this.oldModelImageSize, 1]; // Using the input size to get the shape
this.imagesUrl = config.imagesUrl || `${__dirname}/example_dataset`; // Optional: String, specify the location of where the source folder is of the images
this.lossFunction = config.lossFunction || 'categoricalCrossentropy'; // Optional: String, loss function for the models training phase
this.optimizer = config.optimizer || 'rmsprop'; // Optional: tf.train / String, optimizer for the models training phase
this.epochs = config.epochs || 5; // Optional: Number, specify the amount of epoches to be run during the training phase
this.batchSize = config.batchSize || 8; // Optional: Number, specify the size of batchs to be run during the training phase
}
```