Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/inferno-pytorch/inferno

A utility library around PyTorch
https://github.com/inferno-pytorch/inferno

deep-learning neural-networks pytorch

Last synced: 3 months ago
JSON representation

A utility library around PyTorch

Awesome Lists containing this project

README

        

=======
Inferno
=======

.. image:: https://anaconda.org/conda-forge/inferno/badges/version.svg
:target: https://anaconda.org/conda-forge/inferno

.. image:: https://travis-ci.org/inferno-pytorch/inferno.svg?branch=master
:target: https://travis-ci.org/inferno-pytorch/inferno

..
TODO new docs shield goes here, see https://github.com/inferno-pytorch/inferno/issues/139
.. image:: https://readthedocs.org/projects/inferno-pytorch/badge/?version=latest
:target: http://inferno-pytorch.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status

.. image:: http://svgshare.com/i/2j7.svg

Inferno is a little library providing utilities and convenience functions/classes around
`PyTorch `_.
It's a work-in-progress, but the releases from v0.4 on should be fairly stable!

* Free software: Apache Software License 2.0
* Documentation: http://inferno-pytorch.readthedocs.io (Work in Progress).

Features
--------

Current features include:
* a basic
`Trainer class `_
to encapsulate the training boilerplate (iteration/epoch loops, validation and checkpoint creation),
* a `graph API `_ for building models with complex architectures, powered by `networkx `_.
* `easy data-parallelism `_ over multiple GPUs,
* `a submodule `_ for `torch.nn.Module`-level parameter initialization,
* `a submodule `_ for data preprocessing / transforms,
* `support `_ for `Tensorboard `_ (best with atleast `tensorflow-cpu `_ installed)
* `a callback API `_ to enable flexible interaction with the trainer,
* `various utility layers `_ with more underway,
* `a submodule `_ for volumetric datasets, and more!

.. code:: python

import torch.nn as nn
from inferno.io.box.cifar import get_cifar10_loaders
from inferno.trainers.basic import Trainer
from inferno.trainers.callbacks.logging.tensorboard import TensorboardLogger
from inferno.extensions.layers.convolutional import ConvELU2D
from inferno.extensions.layers.reshape import Flatten

# Fill these in:
LOG_DIRECTORY = '...'
SAVE_DIRECTORY = '...'
DATASET_DIRECTORY = '...'
DOWNLOAD_CIFAR = True
USE_CUDA = True

# Build torch model
model = nn.Sequential(
ConvELU2D(in_channels=3, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
ConvELU2D(in_channels=256, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
ConvELU2D(in_channels=256, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
Flatten(),
nn.Linear(in_features=(256 * 4 * 4), out_features=10),
nn.LogSoftmax(dim=1)
)

# Load loaders
train_loader, validate_loader = get_cifar10_loaders(DATASET_DIRECTORY,
download=DOWNLOAD_CIFAR)

# Build trainer
trainer = Trainer(model) \
.build_criterion('NLLLoss') \
.build_metric('CategoricalError') \
.build_optimizer('Adam') \
.validate_every((2, 'epochs')) \
.save_every((5, 'epochs')) \
.save_to_directory(SAVE_DIRECTORY) \
.set_max_num_epochs(10) \
.build_logger(TensorboardLogger(log_scalars_every=(1, 'iteration'),
log_images_every='never'),
log_directory=LOG_DIRECTORY)

# Bind loaders
trainer \
.bind_loader('train', train_loader) \
.bind_loader('validate', validate_loader)

if USE_CUDA:
trainer.cuda()

# Go!
trainer.fit()

To visualize the training progress, navigate to `LOG_DIRECTORY` and fire up tensorboard with

.. code:: bash

$ tensorboard --logdir=${PWD} --port=6007

and navigate to `localhost:6007` with your browser.

Installation
------------------------

Conda packages for python >= 3.6 for all distributions are availaible on conda-forge:

.. code:: bash

$ conda install -c pytorch -c conda-forge inferno

Future Features:
------------------------
Planned features include:
* a class to encapsulate Hogwild! training over multiple GPUs,
* minimal shape inference with a dry-run,
* proper packaging and documentation,
* cutting-edge fresh-off-the-press implementations of what the future has in store. :)

Credits
---------
All contributors are listed here_.
.. _here: https://inferno-pytorch.github.io/inferno/html/authors.html

This package was partially generated with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template + lots of work by Thorsten.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage