An open API service indexing awesome lists of open source software.

https://github.com/infinitode/open-arc

Open-source Platform for Engineering Neural Architectures and Research Collaboration. Developing and improving AI tools for everyone.
https://github.com/infinitode/open-arc

ai ai-models ai-tools artificial colab-notebook collaboration community engineering experiments free jupyter kaggle ml neural-network nlp notebooks open-source python research tutorials

Last synced: 2 months ago
JSON representation

Open-source Platform for Engineering Neural Architectures and Research Collaboration. Developing and improving AI tools for everyone.

Awesome Lists containing this project

README

          

![OPEN-ARC title image](https://github.com/Infinitode/OPEN-ARC/blob/main/open-arc.jpeg?raw=true)

# OPEN-ARC

### *Open-source Platform for Engineering Neural Architectures and Research Collaboration*

[![Website](https://img.shields.io/badge/OpenARC-Website-green?logo=firefox)](https://open-arc.netlify.app)
[![Contributions Welcome](https://img.shields.io/badge/contributions-welcome-blue.svg)](https://github.com/Infinitode/OPEN-ARC/pulls)
[![Stars](https://img.shields.io/github/stars/Infinitode/OPEN-ARC?style=social)](https://github.com/Infinitode/OPEN-ARC/stargazers)

## πŸ‘‹ Welcome to OPEN-ARC

OPEN-ARC is an open-source initiative to advance AI research through collaboration and community-driven development. Each project presents a challenge, a dataset, and a leaderboard. All contributions are welcome, whether you're a hobbyist, researcher, student, or curious coder.

- 🧠 Build models
- πŸ§ͺ Share notebooks
- πŸ† Update the leaderboard
- πŸš€ Further the field

## πŸ”§ How to Participate

1. **Pick a project** from the list below.
2. **Create your model implementation** from scratch or by improving the base model.
3. **Fork this repo and update `LEADERBOARD.md`** with:

* Your name or alias
* Architecture type
* Platform (e.g. Kaggle/Colab)
* A link to your notebook or GitHub files
4. **Make a pull request.** Done! You’re on the board!

> [!NOTE]
> You do **not** need to touch anything other than `LEADERBOARD.md` to participate. Keep it simple!

## πŸ“ Project Leaderboards (Top 5 Only)

### 🩺 Project 1: Liver Cirrhosis Stage Classification

[πŸ”— Dataset](https://www.kaggle.com/datasets/aadarshvelu/liver-cirrhosis-stage-classification)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ---------------------- | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | RandomForestClassifier | Kaggle | βœ— | 95.6% | [Notebook](Project-1-LCSC/project-1-lcsc.ipynb) |

### 🌦️ Project 2: Weather Type Classification

[πŸ”— Dataset](https://www.kaggle.com/datasets/nikhil7280/weather-type-classification)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ---------------------- | -------- | ---------- | -------- | --------------------------------------------- |
| πŸ₯‡ | Our Model | RandomForestClassifier | Kaggle | βœ— | 91.2% | [Notebook](Project-2-WTC/project-2-wtc.ipynb) |

### πŸ₯” Project 3: Potato Plant Disease Classification

[πŸ”— Dataset](https://www.kaggle.com/datasets/hafiznouman786/potato-plant-diseases-data)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ------------ | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | CustomCNN | Kaggle | βœ— | 95.1% | [Notebook](Project-3-PPDC/project-3-ppdc.ipynb) |

### 🍷 Project 4: Red Wine Quality Classification

[πŸ”— Dataset](https://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | -------------------------- | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | GradientBoostingClassifier | Kaggle | βœ— | 72.8% | [Notebook](Project-4-RWQC/project-4-rwqc.ipynb) |

### βš”οΈ Project 5: Terraria Weapon Name Generation

[πŸ”— Dataset](https://www.kaggle.com/datasets/acr1209/all-terraria-weapons-dps-v-1449)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ------------ | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | SimpleRNN | Kaggle | βœ”οΈ | 78.6% | [Notebook](Project-5-TWNG/project-5-twng.ipynb) |

### πŸ“° Project 6: News Headline Generation

[πŸ”— Dataset](https://www.kaggle.com/datasets/sunnysai12345/news-summary)

| Rank | Contributor | Architecture | Platform | Base Model | BLEU Score | Link |
| ---- | ----------- | ------------ | -------- | ---------- | ---------- | --------------------------------------------- |
| πŸ₯‡ | Our Model | DistilBART | Kaggle | βœ— | 52.8% | [Notebook](Project-6-NHG/project-6-nhg.ipynb) |

### 🌾 Project 7: Crop Recommendation

[πŸ”— Dataset](https://www.kaggle.com/datasets/varshitanalluri/crop-recommendation-dataset)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ------------- | -------- | ---------- | -------- | ------------------------------------------- |
| πŸ₯‡ | Our Model | XGBClassifier | Kaggle | βœ”οΈ | 98.6% | [Notebook](Project-7-CR/project-7-cr.ipynb) |

### πŸͺ΄ Project 8: Plant Stress Prediction

[πŸ”— Dataset](https://www.kaggle.com/datasets/ziya07/plant-health-data)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ------------- | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | XGBClassifier | Kaggle | βœ”οΈ | 99.1% | [Notebook](Project-8-PSPM/project-8-pspm.ipynb) |

### πŸš— Project 9: Traffic Accident Prediction

[πŸ”— Dataset](https://www.kaggle.com/datasets/denkuznetz/traffic-accident-prediction)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ------------- | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | XGBClassifier | Kaggle | βœ”οΈ | 85.2% | [Notebook](Project-9-TAPM/project-9-tapm.ipynb) |

### πŸ„ Project 10: Mushroom Classification

[πŸ”— Dataset](https://www.kaggle.com/datasets/uciml/mushroom-classification)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ---------------------- | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | RandomForestClassifier | Kaggle | βœ”οΈ | 91.1% | [Notebook](Project-10-MCM/project-10-mcm.ipynb) |

### Project 11: Basic Personality Prediction Model

[πŸ”— Dataset](https://www.kaggle.com/datasets/hardikchhipa28/personality-dataset-introvert-or-extrovert)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ---------------------- | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | XGBClassifier | Kaggle | βœ”οΈ | 92% | [Notebook](Project-11-BPPM/project-11-bppm.ipynb) |

### Project 12: Spam Mail Classification Model

[πŸ”— Dataset](https://www.kaggle.com/datasets/hardikchhipa28/personality-dataset-introvert-or-extrovert)

| Rank | Contributor | Architecture | Platform | Base Model | Accuracy | Link |
| ---- | ----------- | ---------------------- | -------- | ---------- | -------- | ----------------------------------------------- |
| πŸ₯‡ | Our Model | MultinomialNB | Kaggle | βœ”οΈ | 98.4% | [Notebook](Project-12/notebook.ipynb) |

## πŸ’¬ Questions or Ideas?

Feel free to open an issue, start a discussion, or just make a PR. This project is made to be collaborative, welcoming, and constantly evolving.

## πŸͺͺ License

OPEN-ARC is licensed under the [MIT License](LICENSE). Go wild, be cool, and credit contributors where credit's due. Contributors' implementations and models may be subject to different licenses. Be sure to check them before using.