Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/innat/ML-Resource
A concise resource repository for machine learning
https://github.com/innat/ML-Resource
data-analysis data-science deep-learning kaggle machine-learning python spark
Last synced: 3 months ago
JSON representation
A concise resource repository for machine learning
- Host: GitHub
- URL: https://github.com/innat/ML-Resource
- Owner: innat
- License: mit
- Created: 2019-08-21T08:28:36.000Z (about 5 years ago)
- Default Branch: gh-pages
- Last Pushed: 2024-02-19T18:41:44.000Z (9 months ago)
- Last Synced: 2024-06-17T15:53:29.424Z (5 months ago)
- Topics: data-analysis, data-science, deep-learning, kaggle, machine-learning, python, spark
- Language: HTML
- Homepage:
- Size: 326 MB
- Stars: 110
- Watchers: 11
- Forks: 35
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![dancing_drogon](https://user-images.githubusercontent.com/17668390/110049208-9ccc0d80-7d7b-11eb-855f-10116ea07661.gif)
[![Palestine](https://img.shields.io/badge/Free-Palestine-white?labelColor=green)](https://twitter.com/search?q=%23FreePalestine&src=typed_query)
A concise resource repository for machine learning. Here, It'll remain concise but yet to comprehensive for machine learning resources and related stuff. It'll be updated continually with times.
## Table of Contents
- [Book Materials](#book-materials) - [Online Course](#online-course) - [Research Databases](#research-databases) - [GitHub](#github) - [Kaggle](#kaggle)- [Best Blog](#best-blog) - [Conferences](#conferences)- [YouTube Star](#youtube-star)> Among the following content which are **BOLD**, you may like to click them first.
## Book Materials
Some of the most influential book lists in the related field.**Machine Learning (ML)**
+ **[Hands-On ML with Scikit-Learn, Keras, and TensorFlow | Author: Aurélien](https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/)**
+ [Python Machine Learning | Author: Sebastian](https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka-ebook/dp/B00YSILNL0)
+ **[The Hundred-Page Machine Learning Book | Andriy](http://themlbook.com/wiki/doku.php?id=start)**
**Deep Learning**
+ **[Deep Learning | Author: Ian Goodfellow](https://www.deeplearningbook.org/)**
+ **[Deep Learning with Python | Author: Francois](https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438)**
+ [Deep Learning for Computer Vision with Python | Author: Adrain](https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/)
+ [Reinforcement Learning: An Introduction | Richard](https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation-ebook/dp/B008H5Q8VA)
**Data Science**
+ [Data Mining: Concepts and Techniques](https://www.amazon.com/Data-Mining-Concepts-Techniques-Management/dp/0123814790)
+ **[An Introduction to Statistical Learning: with Applications in R](https://www.amazon.com/Introduction-Statistical-Learning-Applications-Statistics/dp/1461471370)**
+ [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython-ebook/dp/B075X4LT6K)
+ [Learning Spark: Lightning-Fast Big Data Analysis](https://www.amazon.com/Learning-Spark-Lightning-Fast-Data-Analysis/dp/1449358624)
+ **[High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark](https://www.amazon.com/High-Performance-Spark-Practices-Optimizing/dp/1491943203)**## Online Course
Some of the most influential high rated, resourceful and promising MOOC courses.**Machine Learning**
+ [ML Crash Course | Google](https://developers.google.com/machine-learning/crash-course)
+ [ML Specialization | Coursera](https://www.coursera.org/specializations/machine-learning-introduction)
+ [ML with Javascript | Udemy](https://www.udemy.com/course/machine-learning-with-javascript/)
+ [Google Machine Learning Education](https://developers.google.com/machine-learning)
**Deep Learning**
+ [UFLDL Tutorial](http://ufldl.stanford.edu/tutorial/) | [Stanford Teaching](https://nlp.stanford.edu/teaching/) | [Stanford CS | CNN for Visual Recognition](https://cs231n.github.io/) | [Stanford CS | NLP with Deep Learning](http://web.stanford.edu/class/cs224n/index.html)
+ **[Deep Learning Specialization | Coursera](https://www.coursera.org/specializations/deep-learning)**
+ [Complete Guide to TensorFlow for Deep Learning with Python | Udemy](https://www.udemy.com/course/complete-guide-to-tensorflow-for-deep-learning-with-python/)
+ [Python for Computer Vision with OpenCV and Deep Learning | Udemy](https://www.udemy.com/course/python-for-computer-vision-with-opencv-and-deep-learning/)
+ **[Deep Learning Computer Vision™ CNN, OpenCV, YOLO, SSD & GANs | Udemy](https://www.udemy.com/course/master-deep-learning-computer-visiontm-cnn-ssd-yolo-gans/)****Data Science**
+ [Python for Data Science | edX](https://www.edx.org/course/python-for-data-science-3)
+ [Big Data Specialization | Coursera](https://www.coursera.org/specializations/big-data)
+ [Python for Data Science and Machine Learning Bootcamp | Udemy](https://www.udemy.com/course/python-for-data-science-and-machine-learning-bootcamp/)
+ [Spark and Python for Big Data with PySpark | Udemy](https://www.udemy.com/course/spark-and-python-for-big-data-with-pyspark/)## Research Databases
Some enrich online research databases.
- [Arxiv Sanity Preserver](http://www.arxiv-sanity.com/)
- [FB Research](https://research.fb.com/publications/) | [Apple Machine Learning Journal](https://machinelearning.apple.com/) | [Google AI](https://ai.google/research/pubs/) | [Open AI](https://openai.com/)
- **[Distill](https://distill.pub/)**
- **[PaperWithCode](https://paperswithcode.com/)**
- [ICLR:OpenReview](https://openreview.net/group?id=ICLR.cc)
- Dataset : [OpenDataLab](https://opendatalab.com/)
- Dataset : [PaperWithCode DB](https://paperswithcode.com/datasets)## GitHub (WIP)
Some open source project to facilitate computer vision task, i.e. classification, detection, semanctic / instance / panoptic segmentation, object tracking, keypoint detection, optical character recognition, etc.
| OS Projects | Research Paper | Explained Blogs |
|-------|-------|-------|
|[Detectron2](https://github.com/facebookresearch/detectron2) | [Blog](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/) | [Doc](https://detectron2.readthedocs.io/en/latest/) |
|[OpenMMLab](https://github.com/open-mmlab) | - | - |
|[2D Segmentation-PyTorch](https://github.com/qubvel/segmentation_models.pytorch) | - | [Doc](https://smp.readthedocs.io/en/latest/) |
|[2D Segmentation-Keras](https://github.com/qubvel/segmentation_models) | - | [Doc](https://segmentation-models.readthedocs.io/en/latest/) |
|**[CAM](https://github.com/metalbubble/CAM)** | [Arxiv](https://arxiv.org/pdf/1512.04150.pdf) | [Doc](http://cnnlocalization.csail.mit.edu/) |
|**[PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics)** | - | - |
| - | - | - |
|
- [ETH VIZ](https://www.vis.xyz/)
- [ML-From-Scratch](https://github.com/eriklindernoren/ML-From-Scratch)
- [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning)
- [Awesome Machine Learning](https://github.com/josephmisiti/awesome-machine-learning)
- [Awesome Python](https://github.com/vinta/awesome-python#readme)
- [Awesome C++](https://github.com/fffaraz/awesome-cpp#readme)
- [Awesome JavaScript](https://github.com/sorrycc/awesome-javascript#readme)
- [Awesome Scala](https://github.com/lauris/awesome-scala#readme)
- [Algorithm Visualizer](https://github.com/algorithm-visualizer/algorithm-visualizer)
- [Algovis](https://github.com/enjalot/algovis)
- [Awesome TF-Lite](https://github.com/margaretmz/awesome-tensorflow-lite)
## Kaggle
- Deep Learning in Medicine
- [NIH Chest X-rays](https://www.kaggle.com/nih-chest-xrays/data)
- [SIIM-ISIC Melanoma Classification](https://www.kaggle.com/c/siim-isic-melanoma-classification)
- [2018 Data Science Bowl](https://www.kaggle.com/c/data-science-bowl-2018) - **Segmentation**
- [Chest X-Ray Images (Pneumonia)](https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia)
- [Recursion Cellular Image Classification](https://www.kaggle.com/c/recursion-cellular-image-classification)
- [APTOS 2019 Blindness Detection](https://www.kaggle.com/c/aptos2019-blindness-detection)
- [Diabetic Retinopathy Detection](https://www.kaggle.com/c/diabetic-retinopathy-detection)
- [TReNDS Neuroimaging](https://www.kaggle.com/c/trends-assessment-prediction)
- [SIIM-ACR Pneumothorax Segmentation](https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/overview)
- [RSNA Pneumonia Detection Challenge](https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/overview)
- [OSIC Pulmonary Fibrosis Progression](https://www.kaggle.com/c/osic-pulmonary-fibrosis-progression)
- [VinBigData Chest X-ray Abnormalities Detection](https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection/overview)
- [RANZCR CLiP - Catheter and Line Position Challenge](https://www.kaggle.com/c/ranzcr-clip-catheter-line-classification/overview)
- [OpenVaccine: COVID-19 mRNA Vaccine Degradation Prediction](https://www.kaggle.com/c/stanford-covid-vaccine)
- [RSNA STR Pulmonary Embolism Detection](https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection)
- [Mechanisms of Action (MoA) Prediction](https://www.kaggle.com/c/lish-moa)
- [Predicting Molecular Properties](https://www.kaggle.com/c/champs-scalar-coupling)
- [Prostate cANcer graDe Assessment (PANDA) Challenge](https://www.kaggle.com/c/prostate-cancer-grade-assessment)
- [RSNA Intracranial Hemorrhage Detection](https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection)
- [HuBMAP - Hacking the Kidney](https://www.kaggle.com/c/hubmap-kidney-segmentation)
- [SIIM-FISABIO-RSNA COVID-19 Detection](https://www.kaggle.com/c/siim-covid19-detection)
- [RSNA-MICCAI Brain Tumor Radiogenomic Classification](https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/overview)
- [HuBMAP + HPA - Hacking the Human Body](https://www.kaggle.com/competitions/hubmap-organ-segmentation)
- [UW-Madison GI Tract Image Segmentation](https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation) - **Segmentation**
- [RSNA 2022 Cervical Spine Fracture Detection](https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/)
- General Competitions
**Classification (Image)**
- [Bengali.AI Handwritten Grapheme Classification](https://www.kaggle.com/c/bengaliai-cv19)
- [Understanding Clouds from Satellite Images](https://www.kaggle.com/c/understanding_cloud_organization)
- [ALASKA2 Image Steganalysis](https://www.kaggle.com/c/alaska2-image-steganalysis)
- [Cassava Leaf Disease Classification](https://www.kaggle.com/c/cassava-leaf-disease-classification)
- [H&M Personalized Fashion Recommendations](https://www.kaggle.com/c/h-and-m-personalized-fashion-recommendations/)
**Image Similarity**
- [Google Universal Image Embedding](https://www.kaggle.com/competitions/google-universal-image-embedding)
- [Image Matching Challenge](https://www.kaggle.com/competitions/image-matching-challenge-2022)
- Google Landmark Retrieval [2018](https://www.kaggle.com/competitions/landmark-retrieval-challenge) - [2019](https://www.kaggle.com/competitions/landmark-retrieval-2019) - [2020](https://www.kaggle.com/competitions/landmark-retrieval-2020) - [2021](https://www.kaggle.com/competitions/landmark-retrieval-2021)
- Google Landmark Recognition [2019](https://www.kaggle.com/competitions/landmark-recognition-2019) - [2020](https://www.kaggle.com/competitions/landmark-recognition-2020) - [2021](https://www.kaggle.com/competitions/landmark-recognition-2021)
- [FGVC6](https://sites.google.com/view/fgvc6/home?authuser=0)
**Detection (CV)**
- [Google AI Open Images - Object Detection Track](https://www.kaggle.com/competitions/google-ai-open-images-object-detection-track)
- [Tensorflow - Help Protect the Great Barrier Reef](https://www.kaggle.com/c/tensorflow-great-barrier-reef/overview)
- [Global Wheat Detection](https://www.kaggle.com/c/global-wheat-detection)
- [Severstal: Steel Defect Detection](https://www.kaggle.com/c/severstal-steel-defect-detection)
- [Deepfake Detection Challenge](https://www.kaggle.com/c/deepfake-detection-challenge)
- [Humpback Whale Identification](https://www.kaggle.com/c/humpback-whale-identification/overview)
- [NFL 1st and Future - Impact Detection](https://www.kaggle.com/c/nfl-impact-detection)
- [Lyft Motion Prediction for Autonomous Vehicles](https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles)
- [Lyft 3D Object Detection for Autonomous Vehicles](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles)
- [Peking University/Baidu - Autonomous Driving](https://www.kaggle.com/c/pku-autonomous-driving)
**Segmentation (CV)**
- [Airbus Ship Detection Challenge](https://www.kaggle.com/c/airbus-ship-detection/overview)
- [Carvana Image Masking Challenge](https://www.kaggle.com/c/carvana-image-masking-challenge)
- [Dstl Satellite Imagery Feature Detection](https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection)
- [Understanding Clouds from Satellite Images](https://www.kaggle.com/c/understanding_cloud_organization/overview)
- [iMaterialist (Fashion) 2019 at FGVC6](https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/overview)
- [Carvana Image Masking Challenge](https://www.kaggle.com/c/carvana-image-masking-challenge)
**Instance Segmentation**
- [Sartorius - Cell Instance Segmentation](https://www.kaggle.com/c/sartorius-cell-instance-segmentation)
**Natural Language Processing**
- [Google AI4Code](https://www.kaggle.com/competitions/AI4Code)
- [Feedback Prize - Evaluating Student Writing](https://www.kaggle.com/c/feedback-prize-2021)
- [Feedback Prize - Predicting Effective Arguments](https://www.kaggle.com/competitions/feedback-prize-effectiveness)
- [TensorFlow 2.0 Question Answering](https://www.kaggle.com/c/tensorflow2-question-answering)
- [Google QUEST Q&A Labeling](https://www.kaggle.com/c/google-quest-challenge)
- [Jigsaw Multilingual Toxic Comment Classification](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification)
- [Jigsaw Unintended Bias in Toxicity Classification](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification)
- [Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge)
- [Tweet Sentiment Extraction](https://www.kaggle.com/c/tweet-sentiment-extraction)
- [U.S. Patent Phrase to Phrase Matching](https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching/overview)
- [Zillow Prize](https://www.kaggle.com/competitions/zillow-prize-1/code?competitionId=6649&sortBy=voteCount)
**Audio**
- [Cornell Birdcall Identification](https://www.kaggle.com/c/birdsong-recognition)
- [BirdCLEF 2022: Identify bird calls in soundscapes](https://www.kaggle.com/c/birdclef-2022/overview)
**Generative AI**
- [Generative Dog Images](https://www.kaggle.com/c/generative-dog-images)
- [Stable Diffusion - Image to Prompts](https://www.kaggle.com/competitions/stable-diffusion-image-to-prompts)
**Time Series**
- [OTTO – Multi-Objective Recommender System](https://www.kaggle.com/competitions/otto-recommender-system/)
**Special**
- [Abstraction and Reasoning Challenge](https://www.kaggle.com/c/abstraction-and-reasoning-challenge)
## Best Blog
Very few amount of amazing blogs.
- [OpenAI](https://openai.com/research)
- [Fast-AI](https://www.fast.ai/)
- [Google AI Blog](https://ai.googleblog.com/)
- [TensorFlow Blog](https://blog.tensorflow.org/)
- [Facebook AI](https://ai.facebook.com/)
- [Berkeley AI Research](https://bair.berkeley.edu/blog/)
- **[Depth First Learning](http://www.depthfirstlearning.com/)**
- [Polo Club of Data Science](https://poloclub.github.io/)
- [OpenAI](https://openai.com/)
- [Research Blog: Stanford NLP](https://nlp.stanford.edu/blog/)
- **[PaperWithCode](https://paperswithcode.com/)**
- **[Cleverhans](http://www.cleverhans.io/)** | About: Security and privacy in machine learning.
- **[Andrej Karpathy](https://karpathy.github.io/)**
- [Visualizing ML: Jay Alammar](http://jalammar.github.io/)
- **[Lil'Log](https://lilianweng.github.io/lil-log/)**
- **[Kevin Zakka](https://kevinzakka.github.io/)**
- [Arthur Juliani](https://medium.com/@awjuliani)
- [Colah](https://colah.github.io/)
- [Michael Nielsen](http://michaelnielsen.org/)
- [Sebastian Ruder](http://ruder.io/#open)
- [PyImageSearch](https://www.pyimagesearch.com/)
- [Machine Learning Mastery](https://machinelearningmastery.com/blog/)
- [Open Source](#best-blog)
+ [Facebook Opens Source](https://opensource.facebook.com/)
+ [Google Open Source](https://opensource.google/)
- [Annotated PyTorch Paper Implementations](https://nn.labml.ai/)
## Conferences
- [CVPR - IEEE Conference on Computer Vision and Pattern Recognition](http://cvpr2018.thecvf.com/)
- [NeurIPS : Neural Information Processing Systems (NIPS)](https://nips.cc/)
- [ECCV : European Conference on Computer Vision](https://eccv2020.eu/)
- [ICML : International Conference on Machine Learning](https://icml.cc/)
- [ICCV : IEEE/CVF International Conference on Computer Vision](http://iccv2019.thecvf.com/)
## YouTube Star
- [DSA | mycodeschool](https://www.youtube.com/user/mycodeschool)
- [Arxiv Insights](https://www.youtube.com/c/ArxivInsights)
- [Welch Labs](https://www.youtube.com/c/WelchLabsVideo/featured)
- [3Blue1Brown](https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw)
- [Edureka](https://www.youtube.com/channel/UCkw4JCwteGrDHIsyIIKo4tQ)
- [Sentdex](https://www.youtube.com/channel/UCfzlCWGWYyIQ0aLC5w48gBQ)
- [Standford School | CNN for Visual Recognition](https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv)
- [Code Bullet](https://www.youtube.com/channel/UC0e3QhIYukixgh5VVpKHH9Q/featured)
- [Khan Academy](https://www.youtube.com/channel/UC4a-Gbdw7vOaccHmFo40b9g)
## Contact
If you've anything in mind that you think is awesome and would fit here, feel free to send a [pull request](https://github.com/innat/ML-Bookmarks/pulls) or if you're just feeling social, feel free to [email]([email protected]) me or reach out on [LinkedIn](https://www.linkedin.com/in/innat2k14/).