Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/inoueakimitsu/tune-hve

Hard Vicinal Estimates Hyperparameter Tuning Tool
https://github.com/inoueakimitsu/tune-hve

Last synced: about 2 months ago
JSON representation

Hard Vicinal Estimates Hyperparameter Tuning Tool

Awesome Lists containing this project

README

        

# tune-hve

Hard Vicinal Estimates Hyperparameter Tuning Tool

## Summary

The $\hat{p}_{g}^{\mathrm{HVE}} (\boldsymbol{x}, y)$ in CcGAN is
influenced by the settings of $\kappa$ and $\sigma$.
If $\kappa$ or $\sigma$ are too small, the vicinity is not taken into account.

Given $y^r$, $\kappa$, and $\sigma$,
this tool visualize the range covered by the the second term of
$\hat{p}_{g}^{\mathrm{HVE}} (\boldsymbol{x}, y)$.

This gives the setting guidelines for $\kappa$ and $\sigma$.

## Approach

For the empirical distribution of labels on real data, we do the following:
- First, convolve a Gaussian kernel with bandwidth $\sigma$.
- Next, we convolve a box kernel with bandwidth $\kappa$.
- This visualizes the range covered by the labels in the real data.

## Usage

```
usage: tunehve [-h] [--max MAX] [--min MIN] [--kappa KAPPA] [--sigma SIGMA] data output

Tune HVE

positional arguments:
data data file
output output file

optional arguments:
-h, --help show this help message and exit
--max MAX max value
--min MIN min value
--kappa KAPPA kappa
--sigma SIGMA sigma
```

The following commands can be run to check the behavior for unbalanced age data.

```bash
python tunehve/hve.py testdata/y1.csv out.png --min 0 --max 90 --kappa 2 --sigma 0.3
```

## License

tune-hve is available under the MIT License.

## Reference

1. Ding, Xin, et al. "CcGAN: continuous conditional generative adversarial networks for image generation." International Conference on Learning Representations. 2020.