An open API service indexing awesome lists of open source software.

https://github.com/insdet/instance-detection


https://github.com/insdet/instance-detection

Last synced: 5 months ago
JSON representation

Awesome Lists containing this project

README

          


A High-Resolution Dataset for Instance Detection with Multi-View Instance Capture

[**Qianqian Shen**](https://shenqq377.github.io/)1 · [**Yunhan Zhao**](https://yunhan-zhao.github.io/)2 · [**Nahyun Kwon**](https://nahyunkwon.github.io/)3 · [**Jeeeun Kim**](https://github.com/qubick)3 · [**Yanan Li**](https://yananlix1.github.io/)1 · [**Shu Kong**](https://aimerykong.github.io/)3,4,5

1Zhejiang Lab 2UC Irvine 3Texas A&M University 4University of Macau 5Institute of Collaborative

Paper PDF
Project Page
Benchmark

The paper has been accepted by **NeurIPS (Datasets and Benchmarks) 2023**.

![InsDet](assets/object-insdet.png)

## Dataset
The InsDet datase is a high-resolution real-world dataset for **Instance Detection** with **Multi-view Instance Capture**.

We provide an [InsDet-mini](https://drive.google.com/drive/folders/1X8MT5JuLq0Vjq1jNE1I9h3q_JGolNJsI?usp=sharing) for demo and visualization, and the full dataset [InsDet-FULL](https://drive.google.com/drive/folders/1rIRTtqKJGCTifcqJFSVvFshRb-sB0OzP?usp=sharing).

The full dataset contains 100 objects with multi-view profile images in 24 rotation positions (per 15°), 160 testing scene images with high-resolution, and 200 pure background images. The mini version contains 5 objects, 10 testing scene images, and 10 pure background images.

### Details
The **Objects** contains:
- 000_aveda_shampoo
- images: raw RGB images (e.g., "images/001.jpg")
- masks: segmentation masks generated by [GrabCut Annotation Toolbox](https://github.com/Kazuhito00/GrabCut-Annotation-Tool) (e.g., "masks/001.png")
-

$\vdots$


- 099_mug_blue

![vis-objects](/assets/vis-objects.png)

Tip: The first three digits specify the instance id.

The **Scenes** contains:
- easy
- leisure\_zone
- raw RGB images with 6144×8192 pixels (e.g. “office001/rgb\_000.jpg”)
- bounding box annotation for objects in test scenes generated by labelImg toolbox and using PascalVOC format (e.g. “office\_001/rgb\_000.xml”)
- meeting\_room
- office\_002
- pantry\_room\_002
- sink
- hard
- office\_001
- pantry\_room\_001

![vis-scenes](/assets/vis-scenes.png)

Tip: Each bounding box is specified by [xmin, ymin, xmax, ymax].

The **Background** contains 200 pure background images that do not include any instances from **Objects** folder.

![vis-background](/assets/vis-background.png)

## Code
The project is built on [detectron2](https://github.com/facebookresearch/detectron2), [segment-anything](https://github.com/facebookresearch/segment-anything), and [DINOv2](https://github.com/facebookresearch/dinov2).

### Demo
The Jupyter notebooks files demonstrate our non-learned method using SAM and DINOv2. We choose light pretrained models of SAM (vit_l) and DINOv2 (dinov2_vits14) for efficiency.

## Citation
If you find our project useful, please consider citing:
```bibtex
@inproceedings{shen2023high,
title={A high-resolution dataset for instance detection with multi-view object capture},
author={Shen, Qianqian and Zhao, Yunhan and Kwon, Nahyun and Kim, Jeeeun and Li, Yanan and Kong, Shu},
booktitle={NeurIPS Datasets & Benchmark Track},
year={2023}
```