Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/insdet/instance-detection
https://github.com/insdet/instance-detection
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/insdet/instance-detection
- Owner: insdet
- Created: 2023-06-10T09:38:39.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-06-14T06:07:12.000Z (7 months ago)
- Last Synced: 2024-06-14T07:27:23.476Z (7 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 26.9 MB
- Stars: 4
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Citation: CITATION.cff
Awesome Lists containing this project
- Awesome-Segment-Anything - [code
README
## A High-Resolution Dataset for Instance Detection with Multi-View Instance Capture
NeurIPS (Datasets and Benchmarks) 2023
**Authors**: Qianqian Shen\*, Yunhan Zhao\*, Nahyun Kwon, Jeeeun Kim, Yanan Li, Shu Kong
If you find our model/method/dataset useful, please cite our work ([NeurIPS version on arxiv](https://arxiv.org/abs/2310.19257)):
@article{shen2024high,
title={A High-Resolution Dataset for Instance Detection with Multi-View Object Capture},
author={Shen, Qianqian and Zhao, Yunhan and Kwon, Nahyun and Kim, Jeeeun and Li, Yanan and Kong, Shu},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}The InsDet datase is a high-resolution real-world dataset for **Instance Detection** with **Multi-view Instance Capture**.
We provide an [InsDet-mini](https://drive.google.com/drive/folders/1X8MT5JuLq0Vjq1jNE1I9h3q_JGolNJsI?usp=sharing) for demo and visualization, and the full dataset [InsDet-FULL](https://drive.google.com/drive/folders/1rIRTtqKJGCTifcqJFSVvFshRb-sB0OzP?usp=sharing).## Dataset
The full dataset contains 100 objects with multi-view profile images in 24 rotation positions (per 15°), 160 testing scene images with high-resolution, and 200 pure background images. The mini version contains 5 objects, 10 testing scene images, and 10 pure background images.### Details
The **Objects** contains:
- 000_aveda_shampoo
- images: raw RGB images (e.g., "images/001.jpg")
- masks: segmentation masks generated by [GrabCut Annotation Toolbox](https://github.com/Kazuhito00/GrabCut-Annotation-Tool) (e.g., "masks/001.png")
-$\vdots$
- 099_mug_blue![vis-objects](/assets/vis-objects.png)
Tip: The first three digits specify the instance id.
The **Scenes** contains:
- easy
- leisure\_zone
- raw RGB images with 6144×8192 pixels (e.g. “office001/rgb\_000.jpg”)
- bounding box annotation for objects in test scenes generated by labelImg toolbox and using PascalVOC format (e.g. “office\_001/rgb\_000.xml”)
- meeting\_room
- office\_002
- pantry\_room\_002
- sink
- hard
- office\_001
- pantry\_room\_001![vis-scenes](/assets/vis-scenes.png)
Tip: Each bounding box is specified by [xmin, ymin, xmax, ymax].
The **Background** contains 200 pure background images that do not include any instances from **Objects** folder.
![vis-background](/assets/vis-background.png)
## Code
The project is built on [detectron2](https://github.com/facebookresearch/detectron2), [segment-anything](https://github.com/facebookresearch/segment-anything), and [DINOv2](https://github.com/facebookresearch/dinov2).### Demo
The Jupyter notebooks files demonstrate our non-learned method using SAM and DINOv2. We choose light pretrained models of SAM (vit_l) and DINOv2 (dinov2_vits14) for efficiency.