https://github.com/instantX-research/CSGO
CSGO: Content-Style Composition in Text-to-Image Generation 🔥
https://github.com/instantX-research/CSGO
Last synced: about 1 month ago
JSON representation
CSGO: Content-Style Composition in Text-to-Image Generation 🔥
- Host: GitHub
- URL: https://github.com/instantX-research/CSGO
- Owner: instantX-research
- Created: 2024-07-05T14:38:29.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-08-30T11:02:20.000Z (about 1 year ago)
- Last Synced: 2024-08-31T20:03:01.755Z (about 1 year ago)
- Homepage: https://csgo-gen.github.io/
- Size: 39.2 MB
- Stars: 78
- Watchers: 15
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-diffusion-categorized - [Code
- ai-game-devtools - CSGO - Style Composition in Text-to-Image Generation. |[arXiv](https://arxiv.org/abs/2408.16766) | | Image | (<span id="image">Image</span> / <span id="tool">LLM (LLM & Tool)</span>)
README
CSGO: Content-Style Composition in Text-to-Image Generation
[**Peng Xing**](https://github.com/xingp-ng)12* · [**Haofan Wang**](https://haofanwang.github.io/)1* · [**Yanpeng Sun**](https://scholar.google.com.hk/citations?user=a3FI8c4AAAAJ&hl=zh-CN&oi=ao/)2 · [**Qixun Wang**](https://github.com/wangqixun)1 · [**Xu Bai**](https://huggingface.co/baymin0220)13 · [**Hao Ai**](https://github.com/aihao2000)14 · [**Renyuan Huang**](https://github.com/DannHuang)15
[**Zechao Li**](https://zechao-li.github.io/)2✉1InstantX Team · 2Nanjing University of Science and Technology · 3Xiaohongshu · 4Beihang University · 5Peking University
*equal contributions, ✉corresponding authors
![]()
![]()
[](https://huggingface.co/InstantX/CSGO)
[](https://huggingface.co/spaces/xingpng/CSGO/)
[](https://github.com/instantX-research/CSGO)## Updates 🔥
[//]: # (- **`2024/07/19`**: ✨ We support 🎞️ portrait video editing (aka v2v)! More to see [here](assets/docs/changelog/2024-07-19.md).)
[//]: # (- **`2024/07/17`**: 🍎 We support macOS with Apple Silicon, modified from [jeethu](https://github.com/jeethu)'s PR [#143](https://github.com/KwaiVGI/LivePortrait/pull/143).)
[//]: # (- **`2024/07/10`**: 💪 We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](assets/docs/changelog/2024-07-10.md).)
[//]: # (- **`2024/07/09`**: 🤗 We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)!)
[//]: # (Continuous updates, stay tuned!)
- **`2024/09/04`**: 🔥 We released the gradio code. You can simply configure it and use it directly.
- **`2024/09/03`**: 🔥 We released the online demo on [Hugggingface](https://huggingface.co/spaces/xingpng/CSGO/).
- **`2024/09/03`**: 🔥 We released the [pre-trained weight](https://huggingface.co/InstantX/CSGO).
- **`2024/09/03`**: 🔥 We released the initial version of the inference code.
- **`2024/08/30`**: 🔥 We released the technical report on [arXiv](https://arxiv.org/pdf/2408.16766)
- **`2024/07/15`**: 🔥 We released the [homepage](https://csgo-gen.github.io).## Plan 💪
- [x] technical report
- [x] inference code
- [x] pre-trained weight [4_16]
- [x] pre-trained weight [4_32]
- [x] online demo
- [ ] pre-trained weight_v2 [4_32]
- [ ] IMAGStyle dataset
- [ ] training code
- [ ] more pre-trained weight## Introduction 📖
This repo, named **CSGO**, contains the official PyTorch implementation of our paper [CSGO: Content-Style Composition in Text-to-Image Generation](https://arxiv.org/pdf/).
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) 💖.## Pipeline 💻
![]()
## Capabilities 🚅
🔥 Our CSGO achieves **image-driven style transfer, text-driven stylized synthesis, and text editing-driven stylized synthesis**.
🔥 For more results, visit our homepage 🔥
![]()
## Getting Started 🏁
### 1. Clone the code and prepare the environment
```bash
git clone https://github.com/instantX-research/CSGO
cd CSGO# create env using conda
conda create -n CSGO python=3.9
conda activate CSGO# install dependencies with pip
# for Linux and Windows users
pip install -r requirements.txt
```### 2. Download pretrained weights
We currently release two model weights.
| Mode | content token | style token | Other |
|:----------------:|:-----------:|:-----------:|:---------------------------------:|
| csgo.bin |4|16| - |
| csgo_4_32.bin |4|32| Deepspeed zero2 |
| csgo_4_32_v2.bin |4|32| Deepspeed zero2+more(coming soon) |The easiest way to download the pretrained weights is from HuggingFace:
```bash
# first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
git lfs install
# clone and move the weights
git clone https://huggingface.co/InstantX/CSGO
```
Our method is fully compatible with [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), [VAE](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix), [ControlNet](https://huggingface.co/TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic), and [Image Encoder](https://huggingface.co/h94/IP-Adapter/tree/main/sdxl_models/image_encoder).
Please download them and place them in the ./base_models folder.tips:If you expect to load Controlnet directly using ControlNetPipeline as in CSGO, do the following:
```bash
git clone https://huggingface.co/TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic
mv TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v2_fp16.safetensors TTPLanet_SDXL_Controlnet_Tile_Realistic/diffusion_pytorch_model.safetensors
```
### 3. Inference 🚀```python
import torch
from ip_adapter.utils import BLOCKS as BLOCKS
from ip_adapter.utils import controlnet_BLOCKS as controlnet_BLOCKS
from PIL import Image
from diffusers import (
AutoencoderKL,
ControlNetModel,
StableDiffusionXLControlNetPipeline,)
from ip_adapter import CSGOdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
base_model_path = "./base_models/stable-diffusion-xl-base-1.0"
image_encoder_path = "./base_models/IP-Adapter/sdxl_models/image_encoder"
csgo_ckpt = "./CSGO/csgo.bin"
pretrained_vae_name_or_path ='./base_models/sdxl-vae-fp16-fix'
controlnet_path = "./base_models/TTPLanet_SDXL_Controlnet_Tile_Realistic"
weight_dtype = torch.float16vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16,use_safetensors=True)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
add_watermarker=False,
vae=vae
)
pipe.enable_vae_tiling()target_content_blocks = BLOCKS['content']
target_style_blocks = BLOCKS['style']
controlnet_target_content_blocks = controlnet_BLOCKS['content']
controlnet_target_style_blocks = controlnet_BLOCKS['style']csgo = CSGO(pipe, image_encoder_path, csgo_ckpt, device, num_content_tokens=4,num_style_tokens=32,
target_content_blocks=target_content_blocks, target_style_blocks=target_style_blocks,controlnet=False,controlnet_adapter=True,
controlnet_target_content_blocks=controlnet_target_content_blocks,
controlnet_target_style_blocks=controlnet_target_style_blocks,
content_model_resampler=True,
style_model_resampler=True,
load_controlnet=False,)
style_name = 'img_0.png'
content_name = 'img_0.png'
style_image = "../assets/{}".format(style_name)
content_image = Image.open('../assets/{}'.format(content_name)).convert('RGB')caption ='a small house with a sheep statue on top of it'
num_sample=4
#image-driven style transfer
images = csgo.generate(pil_content_image= content_image, pil_style_image=style_image,
prompt=caption,
negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
content_scale=1.0,
style_scale=1.0,
guidance_scale=10,
num_images_per_prompt=num_sample,
num_samples=1,
num_inference_steps=50,
seed=42,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=0.6,
)#text-driven stylized synthesis
caption='a cat'
images = csgo.generate(pil_content_image= content_image, pil_style_image=style_image,
prompt=caption,
negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
content_scale=1.0,
style_scale=1.0,
guidance_scale=10,
num_images_per_prompt=num_sample,
num_samples=1,
num_inference_steps=50,
seed=42,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=0.01,
)#text editing-driven stylized synthesis
caption='a small house'
images = csgo.generate(pil_content_image= content_image, pil_style_image=style_image,
prompt=caption,
negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
content_scale=1.0,
style_scale=1.0,
guidance_scale=10,
num_images_per_prompt=num_sample,
num_samples=1,
num_inference_steps=50,
seed=42,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=0.4,
)
```
### 4 Gradio interface ⚙️We also provide a Gradio
interface for a better experience, just run by:
```bash
# For Linux and Windows users (and macOS)
python gradio/app.py
```
If you don't have the resources to configure it, we provide an online [demo](https://huggingface.co/spaces/xingpng/CSGO/).
## Demos
🔥 For more results, visit our homepage 🔥### Content-Style Composition
![]()
![]()
### Cycle Translation
![]()
### Text-Driven Style Synthesis
![]()
### Text Editing-Driven Style Synthesis
![]()
## Star History
[](https://star-history.com/#instantX-research/CSGO&Date)## Acknowledgements
This project is developed by InstantX Team and Xiaohongshu, all copyright reserved.
Sincere thanks to xiaohongshu for providing the computing resources.## Citation 💖
If you find CSGO useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX:
```bibtex
@article{xing2024csgo,
title={CSGO: Content-Style Composition in Text-to-Image Generation},
author={Peng Xing and Haofan Wang and Yanpeng Sun and Qixun Wang and Xu Bai and Hao Ai and Renyuan Huang and Zechao Li},
year={2024},
journal = {arXiv 2408.16766},
}
```