Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/intelpython/dpbench
Benchmark suite to evaluate Data Parallel Extensions for Python
https://github.com/intelpython/dpbench
benchmark dpctl dpnp numba numba-dpex numpy performance
Last synced: 2 months ago
JSON representation
Benchmark suite to evaluate Data Parallel Extensions for Python
- Host: GitHub
- URL: https://github.com/intelpython/dpbench
- Owner: IntelPython
- License: apache-2.0
- Created: 2021-01-26T15:54:26.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2024-08-28T22:29:17.000Z (5 months ago)
- Last Synced: 2024-08-28T23:37:05.614Z (5 months ago)
- Topics: benchmark, dpctl, dpnp, numba, numba-dpex, numpy, performance
- Language: Python
- Homepage:
- Size: 1.97 MB
- Stars: 17
- Watchers: 8
- Forks: 19
- Open Issues: 15
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![pre-commit](https://github.com/IntelPython/dpbench/actions/workflows/pre-commit.yml/badge.svg)](https://github.com/IntelPython/dpbench/actions/workflows/pre-commit.yml)# DPBench - Benchmarks to evaluate Data-Parallel Extensions for Python
* **\\_numba\_\.py** : This file contains Numba implementations of the benchmarks. There are three modes: nopython-mode, nopython-mode-parallel and nopython-mode-parallel-range.
* **\\_numba_dpex\_\.py** : This file contains Numba-Dpex implementations of the benchmarks. There are three modes: kernel-mode, numpy-mode and prange-mode.
* **\\_dpnp\_\.py** : This file contains dpnp implementations of the benchmarks.
* **\\_native_ext/\\_sycl/_\_kernel.hpp** : This file contains native dpcpp implementations of the benchmarks.
* **\\_numpy.py** : This file contains numpy implementations of the benchmarks. It should take benefits of numpy arrays and should avoid loops over arrays.
* **\\_python.py** : This file contains naive python implementations of the benchmarks. Should be run only for small presets, otherwise it will take long execution time.
* **\\_numba_mlir\_\.py** : This file contains Numba-MLIR implementations of the benchmarks. There are three modes: kernel-mode, numpy-mode and prange-mode. Experimental.## Examples of setting up and running the benchmarks
### Using prebuilt version
1. Create conda environment
```bash
conda create -n dpbench dpbench -c dppy/label/dev -c conda-forge -c https://software.repos.intel.com/python/conda -c nodefaults --override-channels
conda activate dpbench
```2. Run specific benchmark, e.g. black_scholes
```bash
dpbench -b black_scholes run
```### Build from source (for development)
1. Clone the repository
```bash
git clone https://github.com/IntelPython/dpbench
cd dpbench
```2. Setting up conda environment and installing dependencies:
```bash
conda env create -n dpbench -f ./environments/conda.yml
```If you want to build sycl benchmarks as well:
```bash
conda env create -n dpbench -f ./environments/conda-linux-sycl.yml
```3. Build DPBench
```bash
pip install --no-index --no-deps --no-build-isolation -e . -v
```Alternatively you can build it with `setup.py`, but pip version is preferable:
```bash
python setup.py develop
```For sycl build use:
```bash
CC=icx CXX=icpx DPBENCH_SYCL=1 pip install --no-index --no-deps --no-build-isolation -e . -v
```or
```bash
CC=icx CXX=icpx DPBENCH_SYCL=1 python setup.py develop
```4. Run specific benchmark, e.g. black_scholes
```bash
dpbench -b black_scholes run
```### Usage
1. Run all benchmarks
```bash
dpbench -a run
```2. Generate report
```bash
dpbench report
```3. Device Customization
If a framework is SYCL based, an extra configuration option
`sycl_device` may be set in the framework config file or by passing
`--sycl-device` argument to `dpbench run` to control what device
the framework uses for execution. The `sycl_device` value should be
a legal [SYCL device filter
](https://intel.github.io/llvm-docs/EnvironmentVariables.html#sycl_device_filter)
string. The dpcpp, dpnp, and numba_dpex frameworks support the
sycl_device option.Here is an example:
```shell
dpbench -b black_scholes -i dpnp run --sycl-device=level_zero:gpu:0
```4. All available options are available using `dpbench --help` and `dpbench --help`:
```
usage: dpbench [-h] [-b [BENCHMARKS]] [-i [IMPLEMENTATIONS]] [-a | --all-implementations | --no-all-implementations] [--version] [-r [RUN_ID]] [--last-run | --no-last-run] [-d [RESULTS_DB]]
[--log-level [{critical,fatal,error,warning,info,debug}]]
{run,report,config} ...positional arguments:
{run,report,config}options:
-h, --help show this help message and exit
-b [BENCHMARKS], --benchmarks [BENCHMARKS]
Comma separated list of benchmarks. Leave empty to load all benchmarks.
-i [IMPLEMENTATIONS], --implementations [IMPLEMENTATIONS]
Comma separated list of implementations. Use --all-implementations to load all available implementations.
-a, --all-implementations, --no-all-implementations
If set, all available implementations will be loaded.
--version show program's version number and exit
-r [RUN_ID], --run-id [RUN_ID]
run_id to perform actions on. Use --last-run to use latest available run, or leave empty to create new one.
--last-run, --no-last-run
Sets run_id to the latest run_id from the database.
-d [RESULTS_DB], --results-db [RESULTS_DB]
Path to a database to store results.
--log-level [{critical,fatal,error,warning,info,debug}]
Log level.
``````
usage: dpbench run [-h] [-p [{S,M16Gb,M,L}]] [-s | --validate | --no-validate] [--dpbench | --no-dpbench] [--experimental-npbench | --no-experimental-npbench] [--experimental-polybench | --no-experimental-polybench]
[--experimental-rodinia | --no-experimental-rodinia] [-r [REPEAT]] [-t [TIMEOUT]] [--precision [{single,double}]] [--print-results | --no-print-results] [--save | --no-save] [--sycl-device [SYCL_DEVICE]]
[--skip-expected-failures | --no-skip-expected-failures]Subcommand to run benchmark executions.
options:
-h, --help show this help message and exit
-p [{S,M16Gb,M,L}], --preset [{S,M16Gb,M,L}]
Preset to use for benchmark execution.
-s, --validate, --no-validate
Set if the validation will be run for each benchmark.
--dpbench, --no-dpbench
Set if run dpbench benchmarks.
--experimental-npbench, --no-experimental-npbench
Set if run npbench benchmarks.
--experimental-polybench, --no-experimental-polybench
Set if run polybench benchmarks.
--experimental-rodinia, --no-experimental-rodinia
Set if run rodinia benchmarks.
-r [REPEAT], --repeat [REPEAT]
Number of repeats for each benchmark.
-t [TIMEOUT], --timeout [TIMEOUT]
Timeout time in seconds for each benchmark execution.
--precision [{single,double}]
Data precision to use for array initialization.
--print-results, --no-print-results
Show the result summary or not
--save, --no-save Either to save execution into database.
--sycl-device [SYCL_DEVICE]
Sycl device to overwrite for framework configurations.
--skip-expected-failures, --no-skip-expected-failures
Either to save execution into database.
``````
usage: dpbench report [--comparisons [COMPARISON_PAIRS]] [--csv]Subcommand to generate a summary report from the local DB
options:
-c, --comparisons [COMPARISON_PAIRS]
Comma separated list of implementation pairs to be compared
--csv
Sets the general summary report to output in CSV format (default: False)
```### Performance Measurement
For each benchmark, we measure the execution time of the
computationally intesive part, but not the intialization or
shutdown. We provide three inputs (a.k.a presets) for each benchmark.* **S** - Minimal input to verify that programs are executable
* **M** - Medium-sized input for performance measurements on client devices
* **L** - Large-sized input for performance measurements on serversAs a rough guideline for selecting input sizes, **S** inputs need to
be small enough for python and numpy implementations to execute in
<100ms. **M** and **L** inputs need to be large enough to obtain
useful performance insights on client and servers devices,
respectively. Also, note that the python and numpy implementations are
not expected to work with **M** and **L** inputs.