Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/intelpython/optimizations_bench
Collection of performance benchmarks used to present optimizations implemented for Intel(R) Distribution for Python*
https://github.com/intelpython/optimizations_bench
benchmark mkl-umath numpy python
Last synced: about 1 month ago
JSON representation
Collection of performance benchmarks used to present optimizations implemented for Intel(R) Distribution for Python*
- Host: GitHub
- URL: https://github.com/intelpython/optimizations_bench
- Owner: IntelPython
- License: mit
- Created: 2017-04-14T22:26:09.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2024-08-16T18:34:22.000Z (4 months ago)
- Last Synced: 2024-08-16T19:38:11.786Z (4 months ago)
- Topics: benchmark, mkl-umath, numpy, python
- Language: C++
- Size: 76.2 KB
- Stars: 3
- Watchers: 6
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Security: SECURITY.md
Awesome Lists containing this project
README
[![Run benchmark tests](https://github.com/IntelPython/optimizations_bench/actions/workflows/run_tests.yaml/badge.svg)](https://github.com/IntelPython/optimizations_bench/actions/workflows/run_tests.yaml)
# Optimization Benchmarks
Collection of performance benchmarks used to present optimizations implemented for Intel(R) Distribution for Python*## Environment Setup
To install Python environments from Intel channel along with pip-installed packages- `conda env create -f environments/intel.yaml`
- `conda activate intel_env`## Run tests
- `python numpy/umath/umath_mem_bench.py -v --size 10 --goal-time 0.01 --repeats 1`## Run benchmarks
### umath
- To run python benchmarks: `python numpy/umath/umath_mem_bench.py`
- To compile and run native benchmarks (requires `icx`): `make -C numpy/umath`### Random number generation
- To run python benchmarks: `python numpy/random/rng.py`
- To compile and run native benchmarks (requires `icx`): `make -C numpy/random`## See also
"[Accelerating Scientific Python with Intel Optimizations](http://conference.scipy.org/proceedings/scipy2017/pdfs/oleksandr_pavlyk.pdf)" by Oleksandr Pavlyk, Denis Nagorny, Andres Guzman-Ballen, Anton Malakhov, Hai Liu, Ehsan Totoni, Todd A. Anderson, Sergey Maidanov. Proceedings of the 16th Python in Science Conference (SciPy 2017), July 10 - July 16, Austin, Texas