Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/interdigitalinc/wrappingnet

Implementation of the WrappingNet
https://github.com/interdigitalinc/wrappingnet

Last synced: about 2 months ago
JSON representation

Implementation of the WrappingNet

Awesome Lists containing this project

README

        

# WrappingNet

Implementation of the WrappingNet architecture.

The entire framework is illustrated below.

drawing

## Data Preparation
The dataset for WrappingNet should be prepared as follows:
### For training
1. `mkdir -p datasets/Manifold40; cd datasets/Manifold40`
2. Download processed.zip from `https://aspera.pub/3O5IeFo` then move into `datasets/Manifold40/`
3. `unzip processed.zip`, then check the data under `datasets/Manifold40/processed/`
### For evaluation
4. `wget https://cg.cs.tsinghua.edu.cn/dataset/subdivnet/datasets/Manifold40.zip`
5. `unzip Manifold40.zip`
6. `mv Manifold40 raw` then check the data under `datasets/Manifold40/raw/`

## Dependencies
```
pytorch
pytorch-geometric
pytorch-lightning
pytorch-scatter
botorch
open3d
numpy
```

## To Run
To use our generalized face convolutions, follow these steps:
1. Create a python environment with the above dependencies installed
2. Go to `./nndistance/` and run `python build.py install`. This will build the faster chamfer distance module.
3. Run `CUDA_VISIBLE_DEVICES={GPU}, bash scripts/LC.sh` or `CUDA_VISIBLE_DEVICES={GPU}, bash scripts/basesup3.sh` to launch a training script.

## Citation
Eric Lei, Muhammad Asad Lodhi, Jiahao Pang, Junghyun Ahn, Dong Tian,

"*WrappingNet: Mesh Autoencoder via Deep Sphere Deformation*",

To Appear in 2024 IEEE International Conference on Image Processing (ICIP).