Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/interdigitalinc/wrappingnet
Implementation of the WrappingNet
https://github.com/interdigitalinc/wrappingnet
Last synced: about 2 months ago
JSON representation
Implementation of the WrappingNet
- Host: GitHub
- URL: https://github.com/interdigitalinc/wrappingnet
- Owner: InterDigitalInc
- License: other
- Created: 2024-06-14T18:19:13.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-06-28T00:20:57.000Z (7 months ago)
- Last Synced: 2024-06-28T01:54:50.541Z (7 months ago)
- Language: Python
- Homepage:
- Size: 721 KB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# WrappingNet
Implementation of the WrappingNet architecture.
The entire framework is illustrated below.## Data Preparation
The dataset for WrappingNet should be prepared as follows:
### For training
1. `mkdir -p datasets/Manifold40; cd datasets/Manifold40`
2. Download processed.zip from `https://aspera.pub/3O5IeFo` then move into `datasets/Manifold40/`
3. `unzip processed.zip`, then check the data under `datasets/Manifold40/processed/`
### For evaluation
4. `wget https://cg.cs.tsinghua.edu.cn/dataset/subdivnet/datasets/Manifold40.zip`
5. `unzip Manifold40.zip`
6. `mv Manifold40 raw` then check the data under `datasets/Manifold40/raw/`## Dependencies
```
pytorch
pytorch-geometric
pytorch-lightning
pytorch-scatter
botorch
open3d
numpy
```## To Run
To use our generalized face convolutions, follow these steps:
1. Create a python environment with the above dependencies installed
2. Go to `./nndistance/` and run `python build.py install`. This will build the faster chamfer distance module.
3. Run `CUDA_VISIBLE_DEVICES={GPU}, bash scripts/LC.sh` or `CUDA_VISIBLE_DEVICES={GPU}, bash scripts/basesup3.sh` to launch a training script.## Citation
Eric Lei, Muhammad Asad Lodhi, Jiahao Pang, Junghyun Ahn, Dong Tian,
"*WrappingNet: Mesh Autoencoder via Deep Sphere Deformation*",
To Appear in 2024 IEEE International Conference on Image Processing (ICIP).