Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/internlm/internlm-wqx
https://github.com/internlm/internlm-wqx
internlm-20b internlm2 llm
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/internlm/internlm-wqx
- Owner: InternLM
- Created: 2024-06-05T05:27:35.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-06-25T10:29:29.000Z (6 months ago)
- Last Synced: 2024-06-25T12:12:25.551Z (6 months ago)
- Topics: internlm-20b, internlm2, llm
- Language: Python
- Homepage:
- Size: 16.6 KB
- Stars: 13
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
[![license](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/license.svg)](./LICENSE)
# Introduction
InternLM2-WQX与InternLM2-WQX-VL是InternLM团队于2024年高考前夕最新推出的文曲星系列模型。
高考覆盖各类学科及题型,同时因其开考前的“绝密性”,被视作中国最具权威的考试之一,成为评估考生综合能力的“试金石”。这一面向人类设计的高难度综合性测试,目前普遍被研究者用于考察大模型的智能水平。InternLM2-WQX系列模型在2024年高考评测集[GAOKAO-Eval](https://github.com/open-compass/GAOKAO-Eval)上取得了优异的成绩,综合表现与GPT-4o相当,且超越了国内外一系列开源大模型,体现了InternLM2-WQX系列模型优秀的性能。
我们即将更新关于文曲星系列模型数据准备的相关说明,敬请期待。
# Model Zoo
| Model | HuggingFace | ModelScope | Release Date |
| --------------------------- | ----------------------------------------- | ---------------------------------------- | ------------ |
| **InternLM2-WQX-20B** | [🤗internlm2-wqx-20b](https://huggingface.co/internlm/internlm2-wqx-20b) | [ internlm2-wqx-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-wqx-20b/summary) | 2024-06-04 |
| **InternLM2-WQX-VL-20B** | [🤗internlm2-wqx-vl-20b](https://huggingface.co/internlm/internlm2-wqx-vl-20b) | [ internlm2-wqx-vl-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-wqx-vl-20b/summary) | 2024-06-04 |## MD5 Check
### LLM权重文件的md5值
```
md5sum ./*
5209adfd6ef7d1724848ff0372362568 ./model-00001-of-00004.safetensors
e37ee2eafecfed543d10dca75998204e ./model-00002-of-00004.safetensors
ea3da8035b0c2a31c369dd463adf9b52 ./model-00003-of-00004.safetensors
f1ff218f801c69fd4c12c534b64e1b60 ./model-00004-of-00004.safetensors
```### MLLM权重文件的md5值
```
md5sum ./*
158657dbae9bc369d67cf4bfbdfaaf71 ./pytorch_model-00001-of-00005.bin
c21db8ac1315c10df768f6c3ae3f2825 ./pytorch_model-00002-of-00005.bin
ebc4b0b70e8e9f1adc0b728558d650fb ./pytorch_model-00003-of-00005.bin
eaa393a66dc632d0a6f0f7d815c439bb ./pytorch_model-00004-of-00005.bin
7e6e3237d99a7e8bd7ca9ba10747bfdb ./pytorch_model-00005-of-00005.bin./clip_l_560_pro7b/*
97b05f40ee9826eda467489eed65f85c ./clip_l_560_pro7b/pytorch_model.bin
```# Quick Start
### 快速调用**InternLM2-WQX-20B**语言模型
使用transformers 后端进行推理
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizerdevice = "cuda"
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-wqx-20b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"internlm/internlm2-wqx-20b",
torch_dtype=torch.bfloat16,
trust_remote_code=True
).to(device).eval()query = "已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为$ \\sqrt { 3 }$,则圆锥的体积为( ).\nA. $ 2 \\sqrt { 3 } \\pi$\nB. $ 3 \\sqrt { 3 } \\pi$\nC. $ 6 \\sqrt { 3 } \\pi$\nD. $ 9 \\sqrt { 3 } \\pi$"
inputs = tokenizer(query, return_tensors="pt")
inputs = inputs["input_ids"].to(device)
gen_kwargs = {"max_length": 1024, "do_sample": False}
outputs = model.generate(inputs, **gen_kwargs)
outputs = outputs[0].cpu().tolist()[len(inputs[0]) :]response = tokenizer.decode(outputs, skip_special_tokens=True)
print(response)
```使用vllm 后端进行推理:
```python
from vllm import LLM, SamplingParamsmodel_name = "internlm/internlm2-wqx-20b"
prompts = ["已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为$ \\sqrt { 3 }$,则圆锥的体积为( ).\nA. $ 2 \\sqrt { 3 } \\pi$\nB. $ 3 \\sqrt { 3 } \\pi$\nC. $ 6 \\sqrt { 3 } \\pi$\nD. $ 9 \\sqrt { 3 } \\pi$"]
sampling_params = SamplingParams(temperature=0.0, max_tokens=1024)llm = LLM(
model=model_name,
trust_remote_code=True,
enforce_eager=True,
)outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, \nGenerated text: {generated_text!r}")
```### **InternLM2-WQX-20B**语言模型的 Web UI
使用transformers后端进行推理:
```
python web_ui_wqx.py -m internlm/internlm2-wqx-20b
```### 快速调用**InternLM2-WQX-VL-20B**视觉语言模型
使用transformers后端进行推理:
```python
from PIL import Image
from io import BytesIO
import requests
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
import torch
from infer_wqx_vl import process_query_and_image, HD_transformmodel_path = "internlm/internlm2-wqx-vl-20b"
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
model.cuda().half()
model.tokenizer = tokenizerimage_url = "https://ks-1302698447.cos.ap-shanghai.myqcloud.com/img/phymerge.png"
query = "体育课上两位同学在室内羽毛球场进行羽毛球比赛,羽毛球在空中上升的运动轨迹如图中虚线所示,考虑空气阻力,羽毛球加速度方向示意图可能正确的是(\u3000\u3000) \nA: \nB: \nC: \nD: "response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
embeds, im_mask = process_query_and_image(query, image, model, HD_transform)outputs = model.generate(inputs_embeds=embeds, im_mask=im_mask,
temperature=0.0, max_new_tokens=256, num_beams=1,
do_sample=False, repetition_penalty=1.0)
output_token = outputs[0]
output_text = model.tokenizer.decode(output_token, add_special_tokens=False)
print(output_text)
# 斜向下
# 答案是:C
```
针对这个选项里面有图片的考题,我们将图片进行了合并并标记上``来让语言模型能理解多图考题。 当前示例展示的是已经拼接好的图片,详细的图像预处理请参考[GAOKAO-Eval](https://github.com/open-compass/GAOKAO-Eval)中的多模态处理工具。### **InternLM2-WQX-VL-20B**语言模型的 Web UI
使用transformers后端进行推理:
```
python web_ui_wqx_vl.py -m internlm/internlm2-wqx-vl-20b
```# Citation
```bibtex
@misc{2024internlm2wqx,
title={https://github.com/InternLM/InternLM-WQX},
author={InternLM Team},
howpublished = {\url{https://github.com/InternLM/InternLM-WQX}},
year={2024}
}
```