Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/inuyasha2012/pypsy

psychometrics package, including MIRT(multidimension item response theory), IRT(item response theory),GRM(grade response theory),CAT(computerized adaptive testing), CDM(cognitive diagnostic model), FA(factor analysis), SEM(Structural Equation Modeling) .
https://github.com/inuyasha2012/pypsy

classical-test-theory cognitive-diagnostic-models computerized-adaptive-testing education factor-analysis item-response-theory psychology psychometrics questionnaire structural-equation-modeling survey

Last synced: 3 months ago
JSON representation

psychometrics package, including MIRT(multidimension item response theory), IRT(item response theory),GRM(grade response theory),CAT(computerized adaptive testing), CDM(cognitive diagnostic model), FA(factor analysis), SEM(Structural Equation Modeling) .

Awesome Lists containing this project

README

        

.. image:: https://img.shields.io/travis/inuyasha2012/pypsy.svg
:target: https://travis-ci.org/inuyasha2012/pypsy

.. image:: https://coveralls.io/repos/github/inuyasha2012/pypsy/badge.svg?branch=master
:target: https://coveralls.io/github/inuyasha2012/pypsy?branch=master

.. image:: https://img.shields.io/pypi/v/psy.svg
:target: https://pypi.python.org/pypi/psy

.. image:: https://readthedocs.org/projects/python-psychometrics/badge/?version=latest
:target: https://python-psychometrics.readthedocs.io/en/latest/?badge=latest

pypsy
=====

`中文 <./README_ZH.rst>`_

psychometrics package, including structural equation model, confirmatory
factor analysis, unidimensional item response theory, multidimensional
item response theory, cognitive diagnosis model, factor analysis and
adaptive testing. The package is still a doll. will be finished in
future.

unidimensional item response theory
-----------------------------------

models
~~~~~~

- binary response data IRT (two parameters, three parameters).

- grade respone data IRT (GRM model)

Parameter estimation algorithm
------------------------------

- EM algorithm (2PL, GRM)

- MCMC algorithm (3PL)

--------------

Multidimensional item response theory (full information item factor analysis)
-----------------------------------------------------------------------------

Parameter estimation algorithm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The initial value
^^^^^^^^^^^^^^^^^

The approximate polychoric correlation is calculated, and the slope
initial value is obtained by factor analysis of the polychoric
correlation matrix.

EM algorithm
^^^^^^^^^^^^

- E step uses GH integral.

- M step uses Newton algorithm (sparse matrix is divided into non
sparse matrix).

Factor rotation
^^^^^^^^^^^^^^^

Gradient projection algorithm

The shortcomings
~~~~~~~~~~~~~~~~

GH integrals can only estimate low dimensional parameters.

--------------

Cognitive diagnosis model
-------------------------

models
~~~~~~

- Dina

- ho-dina

parameter estimation algorithms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- EM algorithm

- MCMC algorithm

- maximum likelihood estimation (only for estimating skill parameters
of subjects)

--------------

Structural equation model
-------------------------

- contains three parameter estimation methods(ULS, ML and GLS).

- based on gradient descent

--------------

Confirmatory factor analysis
----------------------------

- can be used for continuous data, binary data and ordered data.

- based on gradient descent

- binary and ordered data based on Polychoric correlation matrix.

--------------

Factor analysis
---------------

For the time being, only for the calculation of full information item
factor analysis, it is very simple.

The algorithm
~~~~~~~~~~~~~

principal component analysis

The rotation algorithm
~~~~~~~~~~~~~~~~~~~~~~

gradient projection

--------------

Adaptive test
-------------

model
~~~~~

Thurston IRT model (multidimensional item response theory model for
personality test)

Algorithm
~~~~~~~~~

Maximum information method for multidimensional item response theory

--------------

Require
-------

- numpy

- progressbar2

--------------

How to use it
-------------

install
~~~~~~~
::

pip install psy

See demo

TODO LIST
---------

- theta parameterization of CCFA

- parameter estimation of structural equation models for multivariate
data

- Bayesin knowledge tracing (Bayesian knowledge tracking)

- multidimensional item response theory (full information item factor
analysis)

- high dimensional computing algorithm (adaptive integral, etc.)

- various item response models

- cognitive diagnosis model

- G-DINA model

- Q matrix correlation algorithm

- Factor analysis

- maximum likelihood estimation

- various factor rotation algorithms

- adaptive

- adaptive cognitive diagnosis

- other adaption model

- standard error and P value

- code annotation, testing and documentation.

Reference
---------

- `DINA Model and Parameter Estimation: A
Didactic `__
- `Higher-order latent trait models for cognitive
diagnosis `__
- `Full-Information Item Factor
Analysis. `__
- `Multidimensional adaptive
testing `__
- `Derivative free gradient projection algorithms for rotation `__