Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/inuyasha2012/pypsy
psychometrics package, including MIRT(multidimension item response theory), IRT(item response theory),GRM(grade response theory),CAT(computerized adaptive testing), CDM(cognitive diagnostic model), FA(factor analysis), SEM(Structural Equation Modeling) .
https://github.com/inuyasha2012/pypsy
classical-test-theory cognitive-diagnostic-models computerized-adaptive-testing education factor-analysis item-response-theory psychology psychometrics questionnaire structural-equation-modeling survey
Last synced: 3 months ago
JSON representation
psychometrics package, including MIRT(multidimension item response theory), IRT(item response theory),GRM(grade response theory),CAT(computerized adaptive testing), CDM(cognitive diagnostic model), FA(factor analysis), SEM(Structural Equation Modeling) .
- Host: GitHub
- URL: https://github.com/inuyasha2012/pypsy
- Owner: inuyasha2012
- License: mit
- Created: 2017-08-28T13:56:59.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-11-16T10:32:53.000Z (about 6 years ago)
- Last Synced: 2024-10-02T07:39:22.970Z (3 months ago)
- Topics: classical-test-theory, cognitive-diagnostic-models, computerized-adaptive-testing, education, factor-analysis, item-response-theory, psychology, psychometrics, questionnaire, structural-equation-modeling, survey
- Language: Python
- Homepage:
- Size: 189 KB
- Stars: 215
- Watchers: 19
- Forks: 71
- Open Issues: 3
-
Metadata Files:
- Readme: README.rst
- Changelog: HISTORY.rst
- Contributing: CONTRIBUTING.rst
- License: LICENSE
Awesome Lists containing this project
README
.. image:: https://img.shields.io/travis/inuyasha2012/pypsy.svg
:target: https://travis-ci.org/inuyasha2012/pypsy.. image:: https://coveralls.io/repos/github/inuyasha2012/pypsy/badge.svg?branch=master
:target: https://coveralls.io/github/inuyasha2012/pypsy?branch=master.. image:: https://img.shields.io/pypi/v/psy.svg
:target: https://pypi.python.org/pypi/psy.. image:: https://readthedocs.org/projects/python-psychometrics/badge/?version=latest
:target: https://python-psychometrics.readthedocs.io/en/latest/?badge=latestpypsy
=====`中文 <./README_ZH.rst>`_
psychometrics package, including structural equation model, confirmatory
factor analysis, unidimensional item response theory, multidimensional
item response theory, cognitive diagnosis model, factor analysis and
adaptive testing. The package is still a doll. will be finished in
future.unidimensional item response theory
-----------------------------------models
~~~~~~- binary response data IRT (two parameters, three parameters).
- grade respone data IRT (GRM model)
Parameter estimation algorithm
------------------------------- EM algorithm (2PL, GRM)
- MCMC algorithm (3PL)
--------------
Multidimensional item response theory (full information item factor analysis)
-----------------------------------------------------------------------------Parameter estimation algorithm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~The initial value
^^^^^^^^^^^^^^^^^The approximate polychoric correlation is calculated, and the slope
initial value is obtained by factor analysis of the polychoric
correlation matrix.EM algorithm
^^^^^^^^^^^^- E step uses GH integral.
- M step uses Newton algorithm (sparse matrix is divided into non
sparse matrix).Factor rotation
^^^^^^^^^^^^^^^Gradient projection algorithm
The shortcomings
~~~~~~~~~~~~~~~~GH integrals can only estimate low dimensional parameters.
--------------
Cognitive diagnosis model
-------------------------models
~~~~~~- Dina
- ho-dina
parameter estimation algorithms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- EM algorithm
- MCMC algorithm
- maximum likelihood estimation (only for estimating skill parameters
of subjects)--------------
Structural equation model
-------------------------- contains three parameter estimation methods(ULS, ML and GLS).
- based on gradient descent
--------------
Confirmatory factor analysis
----------------------------- can be used for continuous data, binary data and ordered data.
- based on gradient descent
- binary and ordered data based on Polychoric correlation matrix.
--------------
Factor analysis
---------------For the time being, only for the calculation of full information item
factor analysis, it is very simple.The algorithm
~~~~~~~~~~~~~principal component analysis
The rotation algorithm
~~~~~~~~~~~~~~~~~~~~~~gradient projection
--------------
Adaptive test
-------------model
~~~~~Thurston IRT model (multidimensional item response theory model for
personality test)Algorithm
~~~~~~~~~Maximum information method for multidimensional item response theory
--------------
Require
-------- numpy
- progressbar2
--------------
How to use it
-------------install
~~~~~~~
::pip install psy
See demo
TODO LIST
---------- theta parameterization of CCFA
- parameter estimation of structural equation models for multivariate
data- Bayesin knowledge tracing (Bayesian knowledge tracking)
- multidimensional item response theory (full information item factor
analysis)- high dimensional computing algorithm (adaptive integral, etc.)
- various item response models
- cognitive diagnosis model
- G-DINA model
- Q matrix correlation algorithm
- Factor analysis
- maximum likelihood estimation
- various factor rotation algorithms
- adaptive
- adaptive cognitive diagnosis
- other adaption model
- standard error and P value
- code annotation, testing and documentation.
Reference
---------- `DINA Model and Parameter Estimation: A
Didactic `__
- `Higher-order latent trait models for cognitive
diagnosis `__
- `Full-Information Item Factor
Analysis. `__
- `Multidimensional adaptive
testing `__
- `Derivative free gradient projection algorithms for rotation `__