Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ipeagit/uci

Urban Centrality Index
https://github.com/ipeagit/uci

r urban-data-science urban-form urban-morphometrics

Last synced: about 1 month ago
JSON representation

Urban Centrality Index

Awesome Lists containing this project

README

        

ipea

# uci: Urban Centrality Index

[![CRAN
status](https://www.r-pkg.org/badges/version/uci)](https://CRAN.R-project.org/package=uci)
[![CRAN/METACRAN Total downloads](https://cranlogs.r-pkg.org/badges/grand-total/uci?color=blue)](https://CRAN.R-project.org/package=uci)
[![R-CMD-check](https://github.com/ipeaGIT/uci/workflows/rcmdcheck/badge.svg)](https://github.com/ipeaGIT/uci/actions)
[![Codecov test
coverage](https://codecov.io/gh/ipeaGIT/uci/branch/main/graph/badge.svg)](https://app.codecov.io/gh/ipeaGIT/uci?branch=main)
[![DOI](https://img.shields.io/badge/DOI-10.1111/gean.12002-blue)](https://doi.org/10.1111/gean.12002)
[![Lifecycle:
experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html)

**uci** is an `R` package to calculate the Urban Centrality Index (UCI) originally proposed by Pereira et al., (2013). The UCI measures the extent to which the spatial organization of a city or region varies from extreme polycentric to extreme monocentric in a continuous scale from 0 to 1. Values close to 0 indicate more polycentric patterns and values close to 1 indicate a more monocentric urban form. More info on [this vignette](https://ipeagit.github.io/uci/articles/uci.html).

* [Link to ungated PDF of the Pereira et al., (2013) paper](https://www.urbandemographics.org/publication/2013_urban_centrality_index/)

## Installation

```R
# from CRAN
install.packages('uci')

# or use the development version with latest features
utils::remove.packages('uci')
devtools::install_github("ipeaGIT/uci")
```

## Basic Usage

```R
library(uci)

# load data
data_dir <- system.file("extdata", package = "uci")
grid <- readRDS(file.path(data_dir, "grid_bho.rds"))

head(grid)
#> Simple feature collection with 6 features and 4 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: -43.96438 ymin: -19.97414 xmax: -43.93284 ymax: -19.96717
#> Geodetic CRS: WGS 84
#> id population jobs schools geometry
#> 1 89a881a5a2bffff 439 180 0 POLYGON ((-43.9431 -19.9741...
#> 2 89a881a5a2fffff 266 134 0 POLYGON ((-43.94612 -19.972...
#> 3 89a881a5a67ffff 1069 143 0 POLYGON ((-43.94001 -19.972...
#> 4 89a881a5a6bffff 245 61 0 POLYGON ((-43.9339 -19.9728...
#> 5 89a881a5a6fffff 298 11 0 POLYGON ((-43.93691 -19.971...
#> 6 89a881a5b03ffff 555 1071 0 POLYGON ((-43.96136 -19.970...

# calculate UCI
df <- uci(
sf_object = grid,
var_name = 'jobs',
bootstrap_border = FALSE,
showProgress = TRUE
)

head(df)
#> UCI location_coef spatial_separation spatial_separation_max
#> 1 0.2538635 0.5278007 3880.114 7475.899

```

# Citation ipea

The R package **uci** is developed by a team at the Institute for Applied
Economic Research (Ipea), Brazil. If you use this package in research
publications, please cite it as:

* Pereira, R. H. M., Nadalin, V., Monasterio, L., & Albuquerque, P. H. (2013). **Urban centrality: a simple index**. *Geographical analysis*, 45(1), 77-89. [https://www.doi.org/10.1111/gean.12002](https://www.doi.org/10.1111/gean.12002)

BibTeX:
```
@article{pereira2013urbancentrality,
title = {Urban {{Centrality}}: {{A Simple Index}}},
author = {Pereira, Rafael H. M. and Nadalin, Vanessa and Monasterio, Leonardo and Albuquerque, Pedro H. M.},
year = {2013},
journal = {Geographical Analysis},
volume = {45},
number = {1},
pages = {77--89},
issn = {1538-4632},
doi = {10.1111/gean.12002}
}
```

# Acknowledgement
The Hex image above illustrates Christaller’s Central Place Theory. It was adapted from an image originally created by Christaller and adapted by Becerra, 2015.