Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ise-uiuc/nnsmith
Automatic DNN generation for fuzzing and more
https://github.com/ise-uiuc/nnsmith
compiler deep-learning fuzzing machine-learning pytorch tensorflow
Last synced: 4 days ago
JSON representation
Automatic DNN generation for fuzzing and more
- Host: GitHub
- URL: https://github.com/ise-uiuc/nnsmith
- Owner: ise-uiuc
- License: apache-2.0
- Created: 2021-10-30T00:33:45.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2025-01-14T04:16:54.000Z (12 days ago)
- Last Synced: 2025-01-15T08:29:18.253Z (11 days ago)
- Topics: compiler, deep-learning, fuzzing, machine-learning, pytorch, tensorflow
- Language: Python
- Homepage: https://pypi.org/project/nnsmith/
- Size: 1.02 MB
- Stars: 123
- Watchers: 7
- Forks: 27
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# NNSmith
[![](https://github.com/ise-uiuc/nnsmith/actions/workflows/ci.yaml/badge.svg)](https://github.com/ise-uiuc/nnsmith/actions/workflows/ci.yaml)
[![](https://img.shields.io/pypi/v/nnsmith?color=g)](https://pypi.org/project/nnsmith/)
[![](https://static.pepy.tech/badge/nnsmith)](https://pepy.tech/project/nnsmith)
[![](https://img.shields.io/pypi/l/nnsmith)](https://github.com/ise-uiuc/nnsmith/blob/main/LICENSE)πNNSmithπ is a random DNN generator and a fuzzing infrastructure, primarily designed for automatically validating deep-learning frameworks and compilers.
## Support Table
| Models | [`tvm`](https://github.com/apache/tvm) | [`pt2`](https://pytorch.org/get-started/pytorch-2.0/) | [`torchjit`](https://pytorch.org/docs/stable/jit.html) | [`tensorrt`](https://github.com/NVIDIA/TensorRT) | [`onnxruntime`](https://github.com/microsoft/onnxruntime) | [`xla`](https://www.tensorflow.org/xla) | [`tflite`](https://www.tensorflow.org/lite) |
| ------------ | ------------------------------------ | ----------------------------------------------- | ---------------------------------------------- | ----------------------------------------- | ------------------------------------- | ----------------------------------------------------- | ------------ |
| ONNX | β | | | β | β | | |
| PyTorch | | β π | β π | | | | |
| TensorFlow | | | | | | β | β |β : Supported; π: Supports gradient check;
## Quick Start
**Install latest code (GitHub HEAD):**
```shell
pip install pip --upgrade
pip install "nnsmith[torch,onnx] @ git+https://github.com/ise-uiuc/nnsmith@main" --upgrade
# [optional] add more front- and back-ends such as [tensorflow] and [tvm,onnxruntime,...] in "[...]"
```Install latest stable release [click]
```shell
pip install "nnsmith[torch,onnx]" --upgrade
```Install latest pre-release [click]
```shell
pip install "nnsmith[torch,onnx]" --upgrade --pre
```Setting up graphviz for debugging [click]
Graphviz provides `dot` for visualizing graphs in nice pictures. But it needs to be installed via the following methods:
```shell
sudo apt-get install graphviz graphviz-dev # Linux
brew install graphviz # MacOS
conda install --channel conda-forge pygraphviz # Conda
choco install graphviz # Windowspip install pygraphviz # Final step.
```Also see [pygraphviz install guidance](https://pygraphviz.github.io/documentation/stable/install.html).
```shell
# Generate a random model in "nnsmith_outputs/*"
nnsmith.model_gen model.type=onnx debug.viz=true
```## Learning More
- π [**Uncovered bugs**](doc/bugs.md).
- π [**Documentation**](doc/): [CLI](doc/cli.md), [concept](doc/concept.md), [logging](doc/log-and-err.md), and [known issues](doc/known-issues.md).
- π€ [**Contributing to NNSmith**](doc/CONTRIBUTING.md)
- π We use [hydra](https://hydra.cc/) to manage configurations. See `nnsmith/config/main.yaml`.## Papers
π NeuRI: Diversifying DNN Generation via Inductive Rule Inference [click :: citation]
```bibtex
@article{liu2023neuri,
title = {NeuRI: Diversifying DNN Generation via Inductive Rule Inference},
author = {Liu, Jiawei and Peng, Jinjun and Wang, Yuyao and Zhang, Lingming},
journal = {arXiv preprint arXiv:2302.02261},
year = {2023},
}
```π NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers [click :: citation]
```bibtex
@inproceedings{liu2023nnsmith,
title={Nnsmith: Generating diverse and valid test cases for deep learning compilers},
author={Liu, Jiawei and Lin, Jinkun and Ruffy, Fabian and Tan, Cheng and Li, Jinyang and Panda, Aurojit and Zhang, Lingming},
booktitle={Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2},
pages={530--543},
year={2023}
}
```