Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ishaansathaye/data301-introdatascience

Cal Poly Fall 2023 DATA 301 Introduction to Data Science
https://github.com/ishaansathaye/data301-introdatascience

cal-poly data-science intro

Last synced: 2 days ago
JSON representation

Cal Poly Fall 2023 DATA 301 Introduction to Data Science

Awesome Lists containing this project

README

        

# DATA 301 Introduction to Data Science

## Notes

- Intro
- [Introduction to Notebooks and Google Colab](./notes/intro/Introduction_to_Notebooks_and_Colab.ipynb)
- Quiz 1
- [Tabular Data](./notes/quiz1/Tabular_Data.ipynb)
- [Rows and Observational Units](./notes/quiz1/Rows_and_Observational_Units.ipynb)
- [Columns and Variables](./notes/quiz1/Columns_and_Variables.ipynb)
- [Lecture 1: Introduction to Tabular Data](./notes/quiz1/Day_01_Introduction_to_Tabular_Data.ipynb)
- Quiz 2
- [Summarizing One Categorical Variable](./notes/quiz2/Summarizing_One_Categorical_Variable.ipynb)
- [Summarizing Two Categorical Variables](./notes/quiz2/Summarizing_Two_Categorical_Variables.ipynb)
- [Lecture 2: Categorical Variables](./notes/quiz2/Day_02_Categorical_Variables.ipynb)
- Quiz 3
- [Multi Way Tables and Simpson's Paradox](./notes/quiz3/Multi_Way_Tables_and_Simpson's_Paradox.ipynb)
- [Summarizing a Quantitative Variable](./notes/quiz3/Summarizing_a_Quantitative_Variable.ipynb)
- [Lecture 3A: Multi-way Tables and Simpson's Paradox](./notes/quiz3/Day_03A_Multi_Way_Tables_and_Simpson's_Paradox.ipynb)
- [Lecture 3B: Summarizing a Quantitative Variable](./notes/quiz3/Day_03B_Summarizing_a_Quantitative_Variable.ipynb)
- Quiz 4
- [Transforming Variables](./notes/quiz4/Transforming_Variables.ipynb)
- [Summarizing Two Quantitative Variables](./notes/quiz4/Summarizing_Two_Quantitative_Variables.ipynb)
- [Lecture 4: Quantitative Variables](./notes/quiz4/Day_04_Quantitative_Variables.ipynb)
- Quiz 5
- [Split-Apply-Combine](./notes/quiz5/Split_Apply_Combine.ipynb)
- [Moving Beyond Two Variables](./notes/quiz5/Beyond_Two_Variables.ipynb)
- [Lecture 5: Split-Apply-Combine and Summarizing Categorical and Quantitative Variables](./notes/quiz5/Day_05_Relationships_between_Quantitative_and_Categorical_Variables.ipynb)
- Quiz 6
- [The Grammar of Graphics](./notes/quiz6/Grammar_of_Graphics.ipynb)
- [Lecture 6: Data Visualization](./notes/quiz6/Day_06_Data_Visualization.ipynb)
- Quiz 7
- [Distances between Observations](./notes/quiz7/Distances_Between_Observations.ipynb)
- [Lecture 7: Distances Between Observations](./notes/quiz7/Day_07_Distances_Between_Observations.ipynb)
- Quiz 8
- [Hierarchical Data and JSON](./notes/quiz8/Hierarchical_Data_and_JSON.ipynb)
- [Lecture 8: Hierarchical Data and JSON Data Format](./notes/quiz8/Day_08_JSON_Data_Format_and_APIs.ipynb)
- Quiz 9
- [The XML Data Format](./notes/quiz9/The_XML_Data_Format.ipynb)
- [HTML and Web Scraping](./notes/quiz9/HTML_and_Web_Scraping.ipynb)
- [Lecture 09: XML, HTML, and Web Scraping](./notes/quiz9/Day_09_XML,_HTML,_and_Web_Scraping.ipynb)
- Quiz 10
- [Bag of Words and N-Grams](./notes/quiz10/Bag_of_Words_and_N_Grams.ipynb)
- [The Vector Space Model](./notes/quiz10/The_Vector_Space_Model.ipynb)
- [Lecture 10: Intro to Text Data](./notes/quiz10/Day_10_Introduction_to_Text_Data.ipynb)
- Quiz 11
- [Concatenating and Merging Data](./notes/quiz11/Concatenating_and_Merging_Data.ipynb)
- [Types of Joins](./notes/quiz11/Types_of_Joins.ipynb)
- [Lecture 11: Concatenating and Merging (Joining) Data](./notes/quiz11/Day_11_Concatenating_and_Joining_Data.ipynb)
- [Solutions](https://colab.research.google.com/drive/1Yxs8M9cVzyPz849km5cRSVrPxSQLmkUY?usp=sharing)
- Quiz 12
- [Linear Regression](./notes/quiz12/Linear_Regression.ipynb)
- [Categorical Features in Regression Models](./notes/quiz12/Categorical_Features_in_Regression_Models.ipynb)
- [Lecture 12: Linear Regression](./notes/quiz12/Day_12_Linear_Regression.ipynb)
- Quiz 13
- [K-Nearest Neighbors for Regression](./notes/quiz13/K_Nearest_Neighbors_for_Regression.ipynb)
- [Lecture 13: K-Nearest Neighbors for Regression](./notes/quiz13/Day_13_K_Nearest_Neighbors_for_Regression.ipynb)
- Quiz 14
- [Training and Test Errors](./notes/quiz14/Training_and_Test_Errors.ipynb)
- [Estimating the Test Error](./notes/quiz14/Estimating_the_Test_Error.ipynb)
- [Lecture 14: Training and Test Errors](./notes/quiz14/Day_14_Training_and_Test_Errors.ipynb)
- Quiz 15
- [Model Selection and Hyperparameter Tuning](./notes/quiz15/Model_Selection_and_Hyperparameter_Tuning.ipynb)
- [Lecture 15: Model Selection and Hyperparameter Tuning](./notes/quiz15/Day_15_Model_Section_and_Hyperparameter_Tuning.ipynb)
- Quiz 16
- [Ensemble Models for Regression](./notes/quiz16/Ensemble_Methods_for_Regression.ipynb)
- [Lecture 16: Ensemble Models for Regression](./notes/quiz16/Day_16_Ensemble_Methods_for_Regression.ipynb)
- Quiz 17
- [K-Nearest Neighbors for Classification](./notes/quiz17/K_Nearest_Neighbors_for_Classification.ipynb)
- [Evaluating Classification Models](./notes/quiz17/Evaluating_Classification_Models.ipynb)
- [Lecture 17: K-Nearest Neighbors for Classification](./notes/quiz17/Day_17_K_Nearest_Neighbors_for_Classification.ipynb)
- Quiz 18
- [Estimating Test Metrics for Classification Models](./notes/quiz18/Estimating_Test_Metrics_for_Classification.ipynb)
- [Lecture 18: Estimating Test Metrics for Classification](./notes/quiz18/Day_18_Estimating_Test_Metrics_for_Classification.ipynb)
- Quiz 19
- [Time Series Data](./notes/quiz19/Time_Series_Data.ipynb)
- [Time Series Modeling and Forecasting](./notes/quiz19/Time_Series_Forecasting.ipynb)
- [Lecture 19: Time Series](./notes/quiz19/Day_19_Time_Series.ipynb)
- Quiz 20
- [K Means Clustering](./notes/quiz20/K_Means_Clustering.ipynb)
- [Lecture 20: Unsupervised Learning - K Means Clustering](./notes/quiz20/Day_20_K_Means_Clustering.ipynb)
- Quiz 21
- [Hierarchical Clustering](./notes/quiz21/Hierarchical_Clustering.ipynb)
- [Lecture 21: Hierarchical Clustering](./notes/quiz21/Day_21_Hierarchical_Clustering.ipynb)

## Assignments

- [Assignment 1](./assignments/DATA_301_Assignment_1_Sreshta_Talluri_and_Ishaan_Sathaye.ipynb)
- [PDF](./assignments/DATA_301_Assignment_1_Sreshta_Talluri_and_Ishaan_Sathaye.pdf)
- [Assignment 2A](./assignments/assignment2/DATA_301_Assignment_02A_Ishaan_Sathaye_and_Sreshta_Talluri.ipynb)
- [PDF](./assignments/assignment2/DATA_301_Assignment_02A_Ishaan_Sathaye_and_Sreshta_Talluri.pdf)
- [Assignment 2B](./assignments/assignment2/DATA_301_Assignment_02B_Ishaan_Sathaye_and_Sreshta_Talluri.ipynb)
- [PDF](./assignments/assignment2/DATA_301_Assignment_02B_Ishaan_Sathaye_and_Sreshta_Talluri.pdf)
- [Assignment 3](./assignments/assignment3/DATA_301_Assignment_3_Ishaan_Sathaye_and_Sreshta_Talluri.ipynb)
- [PDF](./assignments/assignment3/DATA_301_Assignment_3_Ishaan_Sathaye_and_Sreshta_Talluri.pdf)
- [Assignment 4](./assignments/assignment4/DATA_301_Assignment_04_ISHAAN_SATHAYE_SRESHTA_TALLURI.ipynb)
- [PDF](./assignments/assignment4/DATA_301_Assignment_04_ISHAAN_SATHAYE_SRESHTA_TALLURI.pdf)
- [Assignment 5A](./assignments/assignment5/DATA_301_Assignment_5A_ISHAAN_SATHAYE_SRESHTA_TALLURI.ipynb)
- [PDF](./assignments/assignment5/DATA_301_Assignment_5A_ISHAAN_SATHAYE_SRESHTA_TALLURI.pdf)
- [Assignment 5B](./assignments/assignment5/DATA_301_Assignment_5B_ISHAAN_SATHAYE_SRESHTA_TALLURI.ipynb)
- [PDF](./assignments/assignment5/DATA_301_Assignment_5B_ISHAAN_SATHAYE_SRESHTA_TALLURI.pdf)
- Assignment 6
- [Day 16 PDF](./assignments/assignment6/Day_16_Ensemble_Methods_for_Regression.pdf)
- [Day 18 PDF](./assignments/assignment6/Day_18_Estimating_Test_Metrics_for_Classification.pdf)

## Project

- Phase 2
- [Collect and Clean Notebook](./project/phase2/clean.ipynb)
- [Visualizations](./project/phase2/visualization.ipynb)
- [Executive Summary Notebook](./project/phase2/summary.ipynb)