Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/isikdogan/deep_learning_tutorials
deep learning: theory + practice
https://github.com/isikdogan/deep_learning_tutorials
deep-learning exercises lectures machine-learning tutorial videos
Last synced: about 2 months ago
JSON representation
deep learning: theory + practice
- Host: GitHub
- URL: https://github.com/isikdogan/deep_learning_tutorials
- Owner: isikdogan
- Created: 2018-10-11T22:14:15.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-03-12T06:19:11.000Z (almost 6 years ago)
- Last Synced: 2024-08-01T03:14:37.981Z (4 months ago)
- Topics: deep-learning, exercises, lectures, machine-learning, tutorial, videos
- Language: Python
- Size: 352 KB
- Stars: 78
- Watchers: 13
- Forks: 29
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-tensorflow-2 - Deep Learning Crash Course-(S9)
README
## Hands-on Deep Learning: TensorFlow Coding Sessions
This repository has the code for the Hands-on Deep Learning: TensorFlow Coding Sessions. The videos will be uploaded on a weekly basis.
The series consist of the introductory TensorFlow tutorials outlined below:
| # | Tutorial | Code | Video |
|-|------------------------------------------------------------------------|------|------------------|
|1| Introduction to TensorFlow: graphs, sessions, constants, and variables |[S1](S1/) and [S1_notebook.ipynb](S1/S1_notebook.ipynb)| [Video #1](https://youtu.be/1KzJbIFnVTE) |
|2| Training a multilayer perceptron |[S2_live.py](S2_live.py)| [Video #2](https://youtu.be/b7ykcBzz9wo) |
|3| Setting up the training and validation pipeline |[S3_live.py](S3_live.py)| [Video #3](https://youtu.be/l_ZvxKBToWs) |
|4| Regularization, saving and resuming from checkpoints, and TensorBoard |[S4_live.py](S4_live.py)| [Video #4](https://youtu.be/ni9FZtF_gLs) |
|5| Convolutional neural networks, batchnorm, learning rate schedules, optimizers|[S5_live.py](S5_live.py)| [Video #5](https://youtu.be/ULX1nWPAJbM) |
|6| Converting a dataset into TFRecords, training an image classifier, and freezing the model for deployment|[S6](S6/)| [Video #6](https://youtu.be/tzKqjPdAf8M) |
|7| Transfer learning: fine tuning a model in TensorFlow |[S7](S7/)| [Video #7](https://youtu.be/jccBP_uA98k) |
|8| Using a Python iterator as a data generator and training a denoising autoencoder |[S8](S8/)| N/A |
|9| What is new in TensorFlow 2.0 **[new]** |[S9](S9/)| [Video #8](https://youtu.be/GI_QVLNCgPo) |---
## Deep Learning Crash Course
A series of mini-lectures on the fundamentals of machine learning, with a focus on neural networks and deep learning.
* [Lecture #1: Introduction](https://youtu.be/nmnaO6esC7c)
* [Lecture #2: Artificial Neural Networks Demystified](https://youtu.be/oS5fz_mHVz0)
* [Lecture #3: Artificial Neural Networks: Going Deeper](https://youtu.be/_XPkAxm0Yx0)
* [Lecture #4: Overfitting, Underfitting, and Model Capacity](https://youtu.be/ms-Ooh9mjiE)
* [Lecture #5: Regularization](https://youtu.be/NRCZJUviZN0)
* [Lecture #6: Data Collection and Preprocessing](https://youtu.be/dAg-_gzFo14)
* [Lecture #7: Convolutional Neural Networks Explained](https://youtu.be/-I0lry5ceDs)
* [Lecture #8: How to Design a Convolutional Neural Network](https://youtu.be/fTw3K8D5xDs)
* [Lecture #9: Transfer Learning](https://youtu.be/_2EHcpg52uU)
* [Lecture #10: Optimization Tricks: momentum, batch-norm, and more](https://youtu.be/kK8-jCCR4is)
* [Lecture #11: Recurrent Neural Networks](https://youtu.be/k97Jrg_4tFA)
* [Lecture #12: Deep Unsupervised Learning](https://youtu.be/P8_W5Wc4zeg)
* [Lecture #13: Generative Adversarial Networks](https://youtu.be/7tFBoxex4JE)
* [Lecture #14: Practical Methodology in Deep Learning](https://youtu.be/9Sl_t_GxX6w)---