Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/iterative/datachain

AI-data warehouse to enrich, transform and analyze data from cloud storages
https://github.com/iterative/datachain

ai cv data-analytics data-wrangling embeddings llm llm-eval mlops multimodal

Last synced: 2 months ago
JSON representation

AI-data warehouse to enrich, transform and analyze data from cloud storages

Awesome Lists containing this project

README

        

================
|logo| DataChain
================

|PyPI| |Python Version| |Codecov| |Tests|

.. |logo| image:: docs/assets/datachain.svg
:height: 24
.. |PyPI| image:: https://img.shields.io/pypi/v/datachain.svg
:target: https://pypi.org/project/datachain/
:alt: PyPI
.. |Python Version| image:: https://img.shields.io/pypi/pyversions/datachain
:target: https://pypi.org/project/datachain
:alt: Python Version
.. |Codecov| image:: https://codecov.io/gh/iterative/datachain/graph/badge.svg?token=byliXGGyGB
:target: https://codecov.io/gh/iterative/datachain
:alt: Codecov
.. |Tests| image:: https://github.com/iterative/datachain/actions/workflows/tests.yml/badge.svg
:target: https://github.com/iterative/datachain/actions/workflows/tests.yml
:alt: Tests

DataChain is a modern Pythonic data-frame library designed for artificial intelligence.
It is made to organize your unstructured data into datasets and wrangle it at scale on
your local machine. Datachain does not abstract or hide the AI models and API calls, but helps to integrate them into the postmodern data stack.

Key Features
============

📂 **Storage as a Source of Truth.**
- Process unstructured data without redundant copies from S3, GCP, Azure, and local
file systems.
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet.
- Unite files and metadata together into persistent, versioned, columnar datasets.

🐍 **Python-friendly data pipelines.**
- Operate on Python objects and object fields.
- Built-in parallelization and out-of-memory compute without SQL or Spark.

🧠 **Data Enrichment and Processing.**
- Generate metadata using local AI models and LLM APIs.
- Filter, join, and group by metadata. Search by vector embeddings.
- Pass datasets to Pytorch and Tensorflow, or export them back into storage.

🚀 **Efficiency.**
- Parallelization, out-of-memory workloads and data caching.
- Vectorized operations on Python object fields: sum, count, avg, etc.
- Optimized vector search.

Quick Start
-----------

.. code:: console

$ pip install datachain

Selecting files using JSON metadata
======================================

A storage consists of images of cats and dogs (`dog.1048.jpg`, `cat.1009.jpg`),
annotated with ground truth and model inferences in the 'json-pairs' format,
where each image has a matching JSON file like `cat.1009.json`:

.. code:: json

{
"class": "cat", "id": "1009", "num_annotators": 8,
"inference": {"class": "dog", "confidence": 0.68}
}

Example of downloading only "high-confidence cat" inferred images using JSON metadata:

.. code:: py

from datachain import Column, DataChain

meta = DataChain.from_json("gs://datachain-demo/dogs-and-cats/*json", object_name="meta")
images = DataChain.from_storage("gs://datachain-demo/dogs-and-cats/*jpg")

images_id = images.map(id=lambda file: file.path.split('.')[-2])
annotated = images_id.merge(meta, on="id", right_on="meta.id")

likely_cats = annotated.filter((Column("meta.inference.confidence") > 0.93) \
& (Column("meta.inference.class_") == "cat"))
likely_cats.export_files("high-confidence-cats/", signal="file")

Data curation with a local AI model
===================================
Batch inference with a simple sentiment model using the `transformers` library:

.. code:: shell

pip install transformers

The code below downloads files the cloud, and applies a user-defined function
to each one of them. All files with a positive sentiment
detected are then copied to the local directory.

.. code:: py

from transformers import pipeline
from datachain import DataChain, Column

classifier = pipeline("sentiment-analysis", device="cpu",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")

def is_positive_dialogue_ending(file) -> bool:
dialogue_ending = file.read()[-512:]
return classifier(dialogue_ending)[0]["label"] == "POSITIVE"

chain = (
DataChain.from_storage("gs://datachain-demo/chatbot-KiT/",
object_name="file", type="text")
.settings(parallel=8, cache=True)
.map(is_positive=is_positive_dialogue_ending)
.save("file_response")
)

positive_chain = chain.filter(Column("is_positive") == True)
positive_chain.export_files("./output")

print(f"{positive_chain.count()} files were exported")

13 files were exported

.. code:: shell

$ ls output/datachain-demo/chatbot-KiT/
15.txt 20.txt 24.txt 27.txt 28.txt 29.txt 33.txt 37.txt 38.txt 43.txt ...
$ ls output/datachain-demo/chatbot-KiT/ | wc -l
13

LLM judging chatbots
=============================

LLMs can work as universal classifiers. In the example below,
we employ a free API from Mistral to judge the `publicly available`_ chatbot dialogs. Please get a free
Mistral API key at https://console.mistral.ai

.. code:: shell

$ pip install mistralai (Requires version >=1.0.0)
$ export MISTRAL_API_KEY=_your_key_

DataChain can parallelize API calls; the free Mistral tier supports up to 4 requests at the same time.

.. code:: py

from mistralai import Mistral
from datachain import File, DataChain, Column

PROMPT = "Was this dialog successful? Answer in a single word: Success or Failure."

def eval_dialogue(file: File) -> bool:
client = Mistral()
response = client.chat.complete(
model="open-mixtral-8x22b",
messages=[{"role": "system", "content": PROMPT},
{"role": "user", "content": file.read()}])
result = response.choices[0].message.content
return result.lower().startswith("success")

chain = (
DataChain.from_storage("gs://datachain-demo/chatbot-KiT/", object_name="file")
.settings(parallel=4, cache=True)
.map(is_success=eval_dialogue)
.save("mistral_files")
)

successful_chain = chain.filter(Column("is_success") == True)
successful_chain.export_files("./output_mistral")

print(f"{successful_chain.count()} files were exported")

With the instruction above, the Mistral model considers 31/50 files to hold the successful dialogues:

.. code:: shell

$ ls output_mistral/datachain-demo/chatbot-KiT/
1.txt 15.txt 18.txt 2.txt 22.txt 25.txt 28.txt 33.txt 37.txt 4.txt 41.txt ...
$ ls output_mistral/datachain-demo/chatbot-KiT/ | wc -l
31

Serializing Python-objects
==========================

LLM responses may contain valuable information for analytics – such as the number of tokens used, or the
model performance parameters.

Instead of extracting this information from the Mistral response data structure (class
`ChatCompletionResponse`), DataChain can serialize the entire LLM response to the internal DB:

.. code:: py

from mistralai import Mistral
from mistralai.models import ChatCompletionResponse
from datachain import File, DataChain, Column

PROMPT = "Was this dialog successful? Answer in a single word: Success or Failure."

def eval_dialog(file: File) -> ChatCompletionResponse:
client = MistralClient()
return client.chat(
model="open-mixtral-8x22b",
messages=[{"role": "system", "content": PROMPT},
{"role": "user", "content": file.read()}])

chain = (
DataChain.from_storage("gs://datachain-demo/chatbot-KiT/", object_name="file")
.settings(parallel=4, cache=True)
.map(response=eval_dialog)
.map(status=lambda response: response.choices[0].message.content.lower()[:7])
.save("response")
)

chain.select("file.name", "status", "response.usage").show(5)

success_rate = chain.filter(Column("status") == "success").count() / chain.count()
print(f"{100*success_rate:.1f}% dialogs were successful")

Output:

.. code:: shell

file status response response response
name usage usage usage
prompt_tokens total_tokens completion_tokens
0 1.txt success 547 548 1
1 10.txt failure 3576 3578 2
2 11.txt failure 626 628 2
3 12.txt failure 1144 1182 38
4 13.txt success 1100 1101 1

[Limited by 5 rows]
64.0% dialogs were successful

Iterating over Python data structures
=============================================

In the previous examples, datasets were saved in the embedded database
(`SQLite`_ in folder `.datachain` of the working directory).
These datasets were automatically versioned, and can be accessed using
`DataChain.from_dataset("dataset_name")`.

Here is how to retrieve a saved dataset and iterate over the objects:

.. code:: py

chain = DataChain.from_dataset("response")

# Iterating one-by-one: support out-of-memory workflow
for file, response in chain.limit(5).collect("file", "response"):
# verify the collected Python objects
assert isinstance(response, ChatCompletionResponse)

status = response.choices[0].message.content[:7]
tokens = response.usage.total_tokens
print(f"{file.get_uri()}: {status}, file size: {file.size}, tokens: {tokens}")

Output:

.. code:: shell

gs://datachain-demo/chatbot-KiT/1.txt: Success, file size: 1776, tokens: 548
gs://datachain-demo/chatbot-KiT/10.txt: Failure, file size: 11576, tokens: 3578
gs://datachain-demo/chatbot-KiT/11.txt: Failure, file size: 2045, tokens: 628
gs://datachain-demo/chatbot-KiT/12.txt: Failure, file size: 3833, tokens: 1207
gs://datachain-demo/chatbot-KiT/13.txt: Success, file size: 3657, tokens: 1101

Vectorized analytics over Python objects
========================================

Some operations can run inside the DB without deserialization.
For instance, let's calculate the total cost of using the LLM APIs, assuming the Mixtral call costs $2 per 1M input tokens and $6 per 1M output tokens:

.. code:: py

chain = DataChain.from_dataset("mistral_dataset")

cost = chain.sum("response.usage.prompt_tokens")*0.000002 \
+ chain.sum("response.usage.completion_tokens")*0.000006
print(f"Spent ${cost:.2f} on {chain.count()} calls")

Output:

.. code:: shell

Spent $0.08 on 50 calls

PyTorch data loader
===================

Chain results can be exported or passed directly to PyTorch dataloader.
For example, if we are interested in passing image and a label based on file
name suffix, the following code will do it:

.. code:: py

from torch.utils.data import DataLoader
from transformers import CLIPProcessor

from datachain import C, DataChain

processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

chain = (
DataChain.from_storage("gs://datachain-demo/dogs-and-cats/", type="image")
.map(label=lambda name: name.split(".")[0], params=["file.name"])
.select("file", "label").to_pytorch(
transform=processor.image_processor,
tokenizer=processor.tokenizer,
)
)
loader = DataLoader(chain, batch_size=1)

Tutorials
---------

* `Getting Started`_
* `Multimodal `_ (try in `Colab `__)
* `LLM evaluations `_ (try in `Colab `__)
* `Reading JSON metadata `_ (try in `Colab `__)

Contributions
-------------

Contributions are very welcome.
To learn more, see the `Contributor Guide`_.

Community and Support
---------------------

* `Docs `_
* `File an issue`_ if you encounter any problems
* `Discord Chat `_
* `Email `_
* `Twitter `_

.. _PyPI: https://pypi.org/
.. _file an issue: https://github.com/iterative/datachain/issues
.. github-only
.. _Contributor Guide: CONTRIBUTING.rst
.. _Pydantic: https://github.com/pydantic/pydantic
.. _publicly available: https://radar.kit.edu/radar/en/dataset/FdJmclKpjHzLfExE.ExpBot%2B-%2BA%2Bdataset%2Bof%2B79%2Bdialogs%2Bwith%2Ban%2Bexperimental%2Bcustomer%2Bservice%2Bchatbot
.. _SQLite: https://www.sqlite.org/
.. _Getting Started: https://datachain.dvc.ai/
.. |Flowchart| image:: https://github.com/iterative/datachain/blob/main/docs/assets/flowchart.png?raw=true
:alt: DataChain FlowChart