Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/its-just-nans/rust-mnist-neural-network
Simple MNIST NN from scratch in rust
https://github.com/its-just-nans/rust-mnist-neural-network
mnist neural-network nn rust
Last synced: 7 days ago
JSON representation
Simple MNIST NN from scratch in rust
- Host: GitHub
- URL: https://github.com/its-just-nans/rust-mnist-neural-network
- Owner: Its-Just-Nans
- Created: 2024-12-12T16:57:17.000Z (10 days ago)
- Default Branch: main
- Last Pushed: 2024-12-12T17:40:12.000Z (10 days ago)
- Last Synced: 2024-12-12T18:32:09.774Z (10 days ago)
- Topics: mnist, neural-network, nn, rust
- Language: Rust
- Homepage:
- Size: 8.79 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# rust-mnist-neural-network
This is a rewrite in rust of this great video
Infos:
- with more epochs, the accuracy will increase, but the training time will also increase.
- full run takes 25 seconds (on my computer with `--release`)## Usage
- Download the MNIST dataset as `train.csv` (the default name) from [kaggle](https://www.kaggle.com/competitions/digit-recognizer/data?select=train.csv) (for example).
- run `cargo run` to run the program
- run `cargo run --release -- data.csv` for faster execution and to use a different filename
- see below for example output```txt
🟠Loading data...
Data loaded: 42000 rows
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛ Label: 5
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
🟢Loading complete (test size = 1000)
🟠Training model with 200 epochs and a 0.01 learing rate on 41000 data...
Epoch 000: accuracy = 9.50%
Epoch 010: accuracy = 36.78%
Epoch 020: accuracy = 52.45%
Epoch 030: accuracy = 60.10%
Epoch 040: accuracy = 64.12%
Epoch 050: accuracy = 67.19%
Epoch 060: accuracy = 71.75%
Epoch 070: accuracy = 74.80%
Epoch 080: accuracy = 77.16%
Epoch 090: accuracy = 79.13%
Epoch 100: accuracy = 80.82%
Epoch 110: accuracy = 82.08%
Epoch 120: accuracy = 83.08%
Epoch 130: accuracy = 83.87%
Epoch 140: accuracy = 84.56%
Epoch 150: accuracy = 85.15%
Epoch 160: accuracy = 85.60%
Epoch 170: accuracy = 85.99%
Epoch 180: accuracy = 86.47%
Epoch 190: accuracy = 86.69%
🟢Training complete!
🟠Testing on test set...
🟢Accuracy on test set: 86.40%
🟠Showing some predictions (on test set)...
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛ Label: 6, Predicted = 6
⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬛⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛ Label: 4, Predicted = 4
⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬜⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬛⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛ Label: 6, Predicted = 6
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬛⬛⬜⬜⬜⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬜⬜⬜⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬜⬜⬛⬛⬛⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬜⬜⬛⬛⬛⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬛⬛⬜⬜⬛⬛⬛⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬛⬛⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬜⬜⬜⬜⬜⬜⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛
🟢Finished
```