https://github.com/itsrainingdata/sparsebnutils
Utilities for learning sparse Bayesian networks
https://github.com/itsrainingdata/sparsebnutils
bayesian-networks graphical-models machine-learning r statistics
Last synced: 3 months ago
JSON representation
Utilities for learning sparse Bayesian networks
- Host: GitHub
- URL: https://github.com/itsrainingdata/sparsebnutils
- Owner: itsrainingdata
- Created: 2016-02-02T02:05:24.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2019-05-29T11:08:50.000Z (about 6 years ago)
- Last Synced: 2025-03-27T03:22:32.872Z (4 months ago)
- Topics: bayesian-networks, graphical-models, machine-learning, r, statistics
- Language: R
- Size: 409 KB
- Stars: 2
- Watchers: 3
- Forks: 1
- Open Issues: 3
-
Metadata Files:
- Readme: README.Rmd
Awesome Lists containing this project
README
---
output:
md_document:
variant: markdown_github
---```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```# sparsebnUtils
[](http://www.repostatus.org/#active)
[](https://travis-ci.org/itsrainingdata/sparsebnUtils)
[](http://www.r-pkg.org/pkg/sparsebnUtils)
[](http://www.r-pkg.org/pkg/sparsebnUtils)A set of tools for representing and estimating sparse Bayesian networks from continuous and discrete data.
## Overview
This package provides various S3 classes for making it easy to estimate graphical models from data:
- `sparsebnData` for managing experimental data with interventions.
- `sparsebnFit` for representing the output of a DAG learning algorithm.
- `sparsebnPath` for representing a solution path of estimates.The package also provides methods for manipulating these objects and for estimating parameters in graphical models:
- `estimate.parameters` for directed graphs.
- `get.precision` for undirected graphs.
- `get.covariance` for covariance matrices.