Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/iva-mzsun/glober
https://github.com/iva-mzsun/glober
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/iva-mzsun/glober
- Owner: iva-mzsun
- License: other
- Created: 2023-03-03T01:45:40.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-01-11T08:50:10.000Z (about 1 year ago)
- Last Synced: 2024-08-01T18:41:07.410Z (5 months ago)
- Language: Python
- Size: 930 KB
- Stars: 9
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-diffusion-categorized - [Code
README
# BLOBER
The official code for the paper:
GLOBER: Coherent Non-autoregressive Video Generation via Global Guided Video Decoder
[ARXIV](https://arxiv.org/abs/2309.13274) [DEMO](https://iva-mzsun.github.io/GLOBER)
## Conda Environment
```
conda env create -f environment.yaml
pip install -r requirements.txt
```## Train Script
```
# Train scripts for both the auto-encoder and generator are the same
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py --base $CFG --logdir experiments/ # --ckpt path/to/ckpt
```## Sample&Evaluation Scripts
We follow the implementation of StyleGAN-V(https://github.com/universome/stylegan-v) for evaluation.
```
# AutoEncoder
bash scripts/script_for_sample_3c.sh $CUR $CUDA $TOTAL $CFG $EXP $PTH $UC_FRAME $UC_VIDEO $UC_DOMAIN
bash scripts/script_for_fvd_3c.sh $EXP $UCFRAME $UCVID $UCDOMAIN $PTH $CUDA# Generator
bash scripts/script_for_sample.sh $CFG $EXP $PTH $UC $CUR $TOTAL $CUDA
bash scripts/script_for_fvd.sh $EXP $UC $PTH $CUDA
```## Checkpoints
Will be released soon.## Test generation speed of prior methods
VIDM: \url{https://github.com/MKFMIKU/vidm}
VDM: \url{https://github.com/lucidrains/video-diffusion-pytorch}
VideoFusion: \url{https://huggingface.co/docs/diffusers/main/en/api/pipelines/text_to_video}
TATS: \url{https://github.com/SongweiGe/TATS}