Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/izikeros/trend_classifier

Library for automated signal segmentation, trend classification and analysis.
https://github.com/izikeros/trend_classifier

algorithmic-trading algotrading timeseries-segmentation trading-bot trend-analysis trend-detection

Last synced: about 1 month ago
JSON representation

Library for automated signal segmentation, trend classification and analysis.

Awesome Lists containing this project

README

        

# Trend classifier
![](https://img.shields.io/pypi/v/trend-classifier.svg)
![](https://img.shields.io/pypi/pyversions/trend-classifier.svg)
![](https://img.shields.io/pypi/l/trend-classifier.svg)
![](https://img.shields.io/pypi/dm/trend-classifier.svg)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/izikeros/trend_classifier/main.svg)](https://results.pre-commit.ci/latest/github/izikeros/trend_classifier/main)
[![Black formatter](https://github.com/izikeros/trend_classifier/actions/workflows/black.yml/badge.svg)](https://github.com/izikeros/trend_classifier/actions/workflows/black.yml)
[![flake8](https://github.com/izikeros/trend_classifier/actions/workflows/flake8.yml/badge.svg)](https://github.com/izikeros/trend_classifier/actions/workflows/flake8.yml)
[![pytest](https://github.com/izikeros/trend_classifier/actions/workflows/tests_with_tox.yml/badge.svg)](https://github.com/izikeros/trend_classifier/actions/workflows/pytest.yml)
[![Maintainability](https://api.codeclimate.com/v1/badges/081a20bb8a5201cd8faf/maintainability)](https://codeclimate.com/github/izikeros/trend_classifier/maintainability)
[![codecov](https://codecov.io/gh/izikeros/trend_classifier/graph/badge.svg?token=ZC9GNJEQQ0)](https://codecov.io/gh/izikeros/trend_classifier)

Library for automated signal segmentation, trend classification and analysis.

## Installation

1. The package is pip-installable. To install it, run:

```sh
pip3 install trend-classifier
```

## Usage
### Pandas DataFrame Input
usage:
```python
import yfinance as yf
from trend_classifier import Segmenter

# download data from yahoo finance
df = yf.download("AAPL", start="2018-09-15", end="2022-09-05", interval="1d", progress=False)

x_in = list(range(0, len(df.index.tolist()), 1))
y_in = df["Adj Close"].tolist()

seg = Segmenter(x_in, y_in, n=20)
seg.calculate_segments()
```

For graphical output use `Segmenter.plot_segments()`:
```python
seg.plot_segments()
```

![Segmentation example](https://github.com/izikeros/trend_classifier/blob/main/img/screenshoot_1.jpg?raw=true)

After calling method `Segmenter.calculate_segments()` segments are identified and information is stored in `Segmenter.segments` as list of Segment objects. Each Segment object. Each Segment object has attributes such as 'start', 'stop' - range of indices for the extracted segment, slope and many more attributes that might be helpful for further analysis.

Exemplary info on one segment:
```python
from devtools import debug
debug(seg.segments[3])
```
and you should see something like this:
```
seg.segments[3]: Segment(
start=154,
stop=177,
slope=-0.37934038908585044,
offset=109.54630934894907,
slopes=[
-0.45173184100846725,
-0.22564684358754555,
0.15555037018051593,
0.34801127785130714,
],
offsets=[
121.65628807526804,
83.56079272220015,
17.32660986821478,
-17.86417581658647,
],
slopes_std=0.31334199799377654,
offsets_std=54.60900279722876,
std=0.933497081795997,
span=82.0,
reason_for_new_segment='offset',
)
```
export results to tabular format (pandas DataFrame):
```python
seg.segments.to_dataframe()
```
![](https://github.com/izikeros/trend_classifier/blob/main/img/to_dataframe.jpg?raw=true)

(**NOTE:** for clarity reasons, not all columns are shown in the screenshot above)

## Alternative approach
- Smooth out the price data using the Savitzky-Golay filter,
- label the highs and lows.
- higher highs and higher lows indicates an uptrend.

The requirement here is than you need OHLC data for the assets you would like to analyse.

## License

[MIT](LICENSE) © [Krystian Safjan](https://safjan.com/).