Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jackeygao/thoughtsgpt
🍔 thoughtsGPT
https://github.com/jackeygao/thoughtsgpt
gpt rag
Last synced: about 1 month ago
JSON representation
🍔 thoughtsGPT
- Host: GitHub
- URL: https://github.com/jackeygao/thoughtsgpt
- Owner: jackeyGao
- Created: 2023-10-18T07:35:10.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-10-23T14:07:59.000Z (about 1 year ago)
- Last Synced: 2024-10-14T19:42:39.461Z (3 months ago)
- Topics: gpt, rag
- Language: Python
- Homepage: https://feishu.streamlit.app/
- Size: 63 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## 🍔 thoughtsGPT
Knowledge document AI assistant, GPT 有所思。
[🍨 demo](https://feishu.streamlit.app/)
## used langchain module
- core/parsing.py:from langchain.docstore.document import Document
- core/parsing.py:from langchain.document_loaders.url import UnstructuredURLLoader
- core/prompts.py:from langchain.prompts import PromptTemplate
- core/prompts.py:from langchain.chains.qa_with_sources.stuff_prompt import template # this template
- core/chunking.py:from langchain.text_splitter import RecursiveCharacterTextSplitter
- core/utils.py:from langchain.chains.combine_documents.stuff import StuffDocumentsChain
- core/utils.py:from langchain.chat_models import ChatOpenAI
- core/utils.py:from langchain.chat_models.base import BaseChatModel
- core/debug.py:from langchain.vectorstores import VectorStore
- core/debug.py:from langchain.embeddings.base import Embeddings
- core/debug.py:from langchain.embeddings.fake import FakeEmbeddings as FakeEmbeddingsBase
- core/debug.py:from langchain.chat_models.fake import FakeListChatModel
- core/qa.py:from langchain.chains.qa_with_sources import load_qa_with_sources_chain
- core/qa.py:from langchain.prompts import PromptTemplate
- core/qa.py:from langchain.chat_models.base import BaseChatModel
- core/embedding.py:from langchain.vectorstores import VectorStore
- core/embedding.py:from langchain.vectorstores.faiss import FAISS
- core/embedding.py:from langchain.vectorstores.chroma import Chroma
- core/embedding.py:from langchain.embeddings import OpenAIEmbeddings
- core/embedding.py:from langchain.embeddings.base import Embeddings
- core/embedding.py:from langchain.docstore.document import Document