An open API service indexing awesome lists of open source software.

https://github.com/jadelhelm/autoprep

Automated Preprocessing Pipeline - DataFrame
https://github.com/jadelhelm/autoprep

anomalies anomaly anomaly-detection automated automated-machine-learning automation data-cleaning data-cleaning-and-preprocessing data-quality machine-learning machinelearning machinelearning-python preprocessing preprocessing-data preprocessing-pipeline python python3 sklearn standardization tabular-data

Last synced: 3 months ago
JSON representation

Automated Preprocessing Pipeline - DataFrame

Awesome Lists containing this project

README

        

# AutoPrep - Automated Preprocessing Pipeline with Univariate Anomaly Indicators
[![PyPIv](https://img.shields.io/pypi/v/AutoPrep)](https://pypi.org/project/AutoPrep/)
![PyPI status](https://img.shields.io/pypi/status/AutoPrep)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/AutoPrep) ![PyPI - License](https://img.shields.io/pypi/l/AutoPrep)

This pipeline focuses on data preprocessing, standardization, and cleaning, with additional features to identify univariate anomalies.

- I used sklearn's Pipeline and Transformer concept to create this preprocessing pipeline
- Pipeline: https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
- Transformer: https://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html

```python
pip install AutoPrep
```
#### Dependencies
- scikit-learn
- category_encoders
- bitstring

## Basic Usage
To utilize this pipeline, you need to import the necessary libraries and initialize the AutoPrep pipeline. Here is a basic example:

````python
import pandas as pd
import numpy as np

X_train = pd.DataFrame({

'ID': [1, 2, 3, 4],
'Name': ['Alice', 'Alice', 'Alice', "Alice"],
'Rank': ['A','B','C','D'],
'Age': [25, 30, 35, 40],
'Salary': [50000.00, 60000.50, 75000.75, 8_000],
'Hire Date': pd.to_datetime(['2020-01-15', '2019-05-22', '2018-08-30', '2021-04-12']),
'Is Manager': [False, True, False, ""]
})
X_test = pd.DataFrame({

'ID': [1, 2, 3, 4],
'Name': ['Alice', 'Alice', 'Alice', "Bob"],
'Rank': ['A','B','C','D'],
'Age': [25, 30, 35, np.nan],
'Salary': [50000.00, 60000.50, 75000.75, 8_000_000],
'Hire Date': pd.to_datetime(['2020-01-15', '2019-05-22', '2018-08-30', '2021-04-12']),
'Is Manager': [False, True, False, ""]
})

########################################
from AutoPrep import AutoPrep

pipeline = AutoPrep(remove_columns_no_variance=False)

pipeline.fit(X=X_train)
X_output = pipeline.transform(X=X_test)

X_output
````

## Highlights ⭐

#### 📌 Implementation of univariate methods / *Detection of univariate anomalies*
Both methods (MOD Z-Value and Tukey Method) are resilient against outliers, ensuring that the position measurement will not be biased. They also support multivariate anomaly detection algorithms in identifying univariate anomalies.

#### 📌 BinaryEncoder instead of OneHotEncoder for nominal columns / *Big Data and Performance*
Newest research shows similar results for encoding nominal columns with significantly fewer dimensions.
- (John T. Hancock and Taghi M. Khoshgoftaar. "Survey on categorical data for neural networks." In: Journal of Big Data 7.1 (2020), pp. 1–41.), Tables 2, 4
- (Diogo Seca and João Mendes-Moreira. "Benchmark of Encoders of Nominal Features for Regression." In: World Conference on Information Systems and Technologies. 2021, pp. 146–155.), P. 151

#### 📌 Transformation of time series data and standardization of data with RobustScaler / *Normalization for better prediction results*

#### 📌 Labeling of NaN values in an extra column instead of removing them / *No loss of information*

---

## Pipeline - Built-in Logic

![Logic of Pipeline](https://raw.githubusercontent.com/JAdelhelm/AutoPrep/main/AutoPrep/img/decision_rules.png)

---

### Reference
- https://www.researchgate.net/publication/379640146_Detektion_von_Anomalien_in_der_Datenqualitatskontrolle_mittels_unuberwachter_Ansatze (German Thesis)