An open API service indexing awesome lists of open source software.

https://github.com/jahongir7174/efficientnet

EfficientNet implementation using PyTorch
https://github.com/jahongir7174/efficientnet

efficientnet imagenet pytorch training

Last synced: 7 months ago
JSON representation

EfficientNet implementation using PyTorch

Awesome Lists containing this project

README

          

[EfficientNet](https://arxiv.org/abs/1905.11946) implementation using PyTorch

#### Steps
* Configure `imagenet` path by changing `data_dir` in `main.py`
* `python main.py --benchmark` for model information
* `bash ./main.sh $ --train` for training model, `$` is number of GPUs
* `python main.py --test` for testing
* See `EfficientNet` class in `nets/nn.py` for different versions

#### Note
* EfficientNet-B0 achieved 77.2 % top-1 and 93.48 % top-5 after 450 epochs

```
Number of parameters: 5267540
Time per operator type:
400.231 ms. 85.9425%. Conv
42.3814 ms. 9.10067%. Sigmoid
19.0129 ms. 4.08269%. Mul
1.83499 ms. 0.394031%. AveragePool
1.59307 ms. 0.342084%. FC
0.636682 ms. 0.136716%. Add
0.0058625 ms. 0.00125887%. Flatten
465.696 ms in Total
FLOP per operator type:
0.76907 GFLOP. 98.5601%. Conv
0.00846444 GFLOP. 1.08476%. Mul
0.002561 GFLOP. 0.328205%. FC
0.000210112 GFLOP. 0.0269269%. Add
0.780305 GFLOP in Total
Feature Memory Read per operator type:
58.5253 MB. 53.8803%. Mul
43.2855 MB. 39.8501%. Conv
5.12912 MB. 4.72204%. FC
1.6809 MB. 1.54749%. Add
108.621 MB in Total
Feature Memory Written per operator type:
33.8578 MB. 54.8834%. Mul
26.9881 MB. 43.7477%. Conv
0.840448 MB. 1.36237%. Add
0.004 MB. 0.00648399%. FC
61.6904 MB in Total
Parameter Memory per operator type:
15.8248 MB. 75.5403%. Conv
5.124 MB. 24.4597%. FC
0 MB. 0%. Add
0 MB. 0%. Mul
20.9488 MB in Total
```