Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jahongir7174/efficientnetv2
EfficientNetV2 implementation using PyTorch
https://github.com/jahongir7174/efficientnetv2
efficientnetv2 imagenet pytorch training
Last synced: about 2 months ago
JSON representation
EfficientNetV2 implementation using PyTorch
- Host: GitHub
- URL: https://github.com/jahongir7174/efficientnetv2
- Owner: jahongir7174
- License: apache-2.0
- Created: 2021-04-12T12:16:37.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2022-07-12T05:21:41.000Z (over 2 years ago)
- Last Synced: 2023-03-09T08:11:02.821Z (almost 2 years ago)
- Topics: efficientnetv2, imagenet, pytorch, training
- Language: Python
- Homepage: https://arxiv.org/abs/2104.00298
- Size: 74.8 MB
- Stars: 91
- Watchers: 2
- Forks: 23
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[EfficientNetV2](https://arxiv.org/abs/2104.00298) implementation using PyTorch
### Steps
* `imagenet` path by changing `data_dir` in `main.py`
* `bash ./main.sh $ --train` for training model, `$` is number of GPUs
* `EfficientNet` class in `nets/nn.py` for different versions### Note
* the default training configuration is for `EfficientNetV2-S`
### Parameters and FLOPS
* `python main.py --benchmark`
```
Number of parameters: 21458488
Time per operator type:
1504.95 ms. 80.5982%. Conv
225.509 ms. 12.0772%. Sigmoid
115.112 ms. 6.1649%. Mul
12.7341 ms. 0.681982%. Add
7.50523 ms. 0.401946%. AveragePool
1.40185 ms. 0.0750768%. FC
0.0112697 ms. 0.000603555%. Flatten
1867.22 ms in Total
FLOP per operator type:
16.7287 GFLOP. 99.708%. Conv
0.0412707 GFLOP. 0.245986%. Mul
0.00516096 GFLOP. 0.0307609%. Add
0.002561 GFLOP. 0.0152643%. FC
16.7777 GFLOP in Total
Feature Memory Read per operator type:
291.409 MB. 51.8224%. Mul
224.497 MB. 39.9231%. Conv
41.2877 MB. 7.34234%. Add
5.12912 MB. 0.912131%. FC
562.323 MB in Total
Feature Memory Written per operator type:
165.083 MB. 50.2087%. Mul
143.062 MB. 43.5114%. Conv
20.6438 MB. 6.27867%. Add
0.004 MB. 0.00121657%. FC
328.793 MB in Total
Parameter Memory per operator type:
79.9537 MB. 93.9773%. Conv
5.124 MB. 6.02273%. FC
0 MB. 0%. Add
0 MB. 0%. Mul
85.0777 MB in Total
```### Results
* `python main.py --test` for trained model testing
| name | resolution | acc@1 | acc@5 | #params | FLOPS | resample | training loss |
|:----------------:|:----------:|:-----:|:-----:|:-------:|:-------:|---------:|--------------:|
| EfficientNetV2-S | 384x384 | 83.9 | 96.7 | 21.46 | 16.7777 | BILINEAR | CrossEntropy |
| EfficientNetV2-S | 384x384 | - | - | 21.46 | 16.7777 | BILINEAR | PolyLoss |
| EfficientNetV2-M | - | - | - | - | - | - | - |
| EfficientNetV2-L | - | - | - | - | - | - | - |