An open API service indexing awesome lists of open source software.

https://github.com/jahongir7174/yolov11-pt

YOLOv11 re-implementation using PyTorch
https://github.com/jahongir7174/yolov11-pt

object-detection opencv python pytorch yolo11 yolov11

Last synced: 3 months ago
JSON representation

YOLOv11 re-implementation using PyTorch

Awesome Lists containing this project

README

          

YOLOv11 re-implementation using PyTorch

### Installation

```
conda create -n YOLO python=3.10.10
conda activate YOLO
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install opencv-python
pip install PyYAML
pip install tqdm
```

### Train

* Configure your dataset path in `main.py` for training
* Run `bash main.sh $ --train` for training, `$` is number of GPUs

### Test

* Configure your dataset path in `main.py` for testing
* Run `python main.py --test` for testing

### Results

| Version | Epochs | Box mAP | Download |
|:-------:|:------:|--------:|--------------------------------------------------------------------------------------:|
| v11_n | 600 | 38.6 | [Model](./weights/best.pt) |
| v11_n* | - | 39.2 | [Model](https://github.com/jahongir7174/YOLOv11-pt/releases/download/v0.0.1/v11_n.pt) |
| v11_s* | - | 46.5 | [Model](https://github.com/jahongir7174/YOLOv11-pt/releases/download/v0.0.1/v11_s.pt) |
| v11_m* | - | 51.2 | [Model](https://github.com/jahongir7174/YOLOv11-pt/releases/download/v0.0.1/v11_m.pt) |
| v11_l* | - | 53.0 | [Model](https://github.com/jahongir7174/YOLOv11-pt/releases/download/v0.0.1/v11_l.pt) |
| v11_x* | - | 54.3 | [Model](https://github.com/jahongir7174/YOLOv11-pt/releases/download/v0.0.1/v11_x.pt) |

```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.386
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.551
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.415
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.196
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.420
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.569
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.321
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.533
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.588
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.646
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.777
```

* `*` means that it is from original repository, see reference
* In the official YOLOv11 code, mask annotation information is used, which leads to higher performance

### Dataset structure

├── COCO
├── images
├── train2017
├── 1111.jpg
├── 2222.jpg
├── val2017
├── 1111.jpg
├── 2222.jpg
├── labels
├── train2017
├── 1111.txt
├── 2222.txt
├── val2017
├── 1111.txt
├── 2222.txt

#### Reference

* https://github.com/ultralytics/ultralytics
* https://github.com/jahongir7174/YOLOv8-pt