An open API service indexing awesome lists of open source software.

https://github.com/jahongir7174/yolov5-pt

YOLOv5 implementation using PyTorch
https://github.com/jahongir7174/yolov5-pt

object-detection pytorch testing training yolov5

Last synced: 5 months ago
JSON representation

YOLOv5 implementation using PyTorch

Awesome Lists containing this project

README

          

YOLOv5 implementation using PyTorch

### Installation

```
conda create -n YOLO python=3.8
conda activate YOLO
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch-lts
pip install opencv-python==4.5.5.64
pip install PyYAML
pip install tqdm
```

### Train

* Configure your dataset path in `main.py` for training
* Run `bash main.sh $ --train` for training, `$` is number of GPUs

### Test

* Configure your dataset path in `main.py` for testing
* Run `python main.py --test` for testing

### Results

| Version | Epochs | Box mAP | Download |
|:-------:|:------:|--------:|------------------------------------------------------------------------------------:|
| v5_n | 600 | 28.0 | [model](./weights/best.pt) |
| v5_n* | 300 | 27.6 | [model](https://github.com/jahongir7174/YOLOv5-pt/releases/download/v0.0.1/v5_n.pt) |
| v5_s* | 300 | 37.1 | [model](https://github.com/jahongir7174/YOLOv5-pt/releases/download/v0.0.1/v5_s.pt) |
| v5_m* | 300 | 44.7 | [model](https://github.com/jahongir7174/YOLOv5-pt/releases/download/v0.0.1/v5_m.pt) |
| v5_l* | 300 | 48.4 | [model](https://github.com/jahongir7174/YOLOv5-pt/releases/download/v0.0.1/v5_l.pt) |
| v5_x* | 300 | 50.0 | [model](https://github.com/jahongir7174/YOLOv5-pt/releases/download/v0.0.1/v5_x.pt) |

* `*` means that weights are ported from original repo, see reference
* To reproduce results, run `bash main.sh 2 --train --epochs 600`, see `steps.csv` for training log

### Dataset structure

├── COCO
├── images
├── train2017
├── 1111.jpg
├── 2222.jpg
├── val2017
├── 1111.jpg
├── 2222.jpg
├── labels
├── train2017
├── 1111.txt
├── 2222.txt
├── val2017
├── 1111.txt
├── 2222.txt

#### Reference

* https://github.com/ultralytics/yolov5