Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jakeret/robotics
Sequence Modelling for Position Tracking of Soft Robotic Arm using Temporal Convolutional Networks
https://github.com/jakeret/robotics
Last synced: about 1 month ago
JSON representation
Sequence Modelling for Position Tracking of Soft Robotic Arm using Temporal Convolutional Networks
- Host: GitHub
- URL: https://github.com/jakeret/robotics
- Owner: jakeret
- Created: 2020-05-19T07:51:34.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-12-26T21:34:46.000Z (about 2 years ago)
- Last Synced: 2023-02-26T07:03:02.525Z (almost 2 years ago)
- Language: Jupyter Notebook
- Size: 787 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
Sequence Modelling for Position Tracking of Soft Robotic Arm using Temporal Convolutional Networks
====Setup
-----
Setup virtualenv and dependencies by running:```
$ pipenv install --dev
$ pipenv shell
```Training
--------A single model can be trained by using `robotics.py`, either in a scripts using
```
import robotics
robotics.run_training(data_path, log_path, output_path, **hyperparams)
```or on the command line with
```
$ python robotics.py --help
usage: robotics.py [-h] [--data-path DATA_PATH] [--output-path OUTPUT_PATH]
[--log-path LOG_PATH] [--depth DEPTH]
[--kernel_size KERNEL_SIZE] [--filters FILTERS]
[--dropout_rate DROPOUT_RATE]
[--normalize_inputs NORMALIZE_INPUTS]
[--learning_rate LEARNING_RATE] [--batch_size BATCH_SIZE]
[--epochs EPOCHS]optional arguments:
-h, --help show this help message and exit
--data-path DATA_PATH
--output-path OUTPUT_PATH
--log-path LOG_PATH
--depth DEPTH
--kernel_size KERNEL_SIZE
--filters FILTERS
--dropout_rate DROPOUT_RATE
--normalize_inputs NORMALIZE_INPUTS
--learning_rate LEARNING_RATE
--batch_size BATCH_SIZE
--epochs EPOCHS
```Parameter tuning
----------------A hyperparameter grid search can be starter using `tuning.py`, either in a scripts using
```
import tuning
tuning.tune_model(data_path="", log_path="logs", output_path="model")
```or on the command line with
```
python tuning.py --help
usage: tuning.py [-h] [--data-path DATA_PATH] [--output-path OUTPUT_PATH]
[--log-path LOG_PATH] [--learning_rate LEARNING_RATE]
[--batch_size BATCH_SIZE] [--epochs EPOCHS]optional arguments:
-h, --help show this help message and exit
--data-path DATA_PATH
--output-path OUTPUT_PATH
--log-path LOG_PATH
--learning_rate LEARNING_RATE
--batch_size BATCH_SIZE
--epochs EPOCHS
```Evaluation
----------All training results are being tracked with mlflow and TensorBoard. To launch the UI's run
```
$ pipenv shell
$ mlflow ui
``````
$ pipenv shell
$ tensorboard --logdir=./logs
```