Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jakeret/unet
Generic U-Net Tensorflow 2 implementation for semantic segmentation
https://github.com/jakeret/unet
deep-learning keras-tensorflow semantic-segmentation tensorflow
Last synced: 5 days ago
JSON representation
Generic U-Net Tensorflow 2 implementation for semantic segmentation
- Host: GitHub
- URL: https://github.com/jakeret/unet
- Owner: jakeret
- License: gpl-3.0
- Created: 2020-04-08T13:33:05.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-12-26T21:38:41.000Z (about 2 years ago)
- Last Synced: 2024-12-24T23:06:05.640Z (12 days ago)
- Topics: deep-learning, keras-tensorflow, semantic-segmentation, tensorflow
- Language: Jupyter Notebook
- Homepage: https://u-net.readthedocs.io/en/latest/?badge=latest
- Size: 6.73 MB
- Stars: 254
- Watchers: 5
- Forks: 88
- Open Issues: 15
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGELOG.rst
- Contributing: CONTRIBUTING.rst
- License: LICENSE.txt
Awesome Lists containing this project
README
=============================
Tensorflow Unet
=============================.. image:: https://readthedocs.org/projects/u-net/badge/?version=latest
:target: https://u-net.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status.. image:: https://travis-ci.com/jakeret/unet.svg?branch=master
:target: https://travis-ci.com/jakeret/unet.. image:: http://img.shields.io/badge/arXiv-1609.09077-orange.svg?style=flat
:target: http://arxiv.org/abs/1609.09077.. image:: https://camo.githubusercontent.com/c8e5db7a5d15b0e7c13480a0ed81db1ae2128b80/68747470733a2f2f62696e6465722e70616e67656f2e696f2f62616467655f6c6f676f2e737667
:target: https://mybinder.org/v2/gh/jakeret/unet/master?filepath=notebooks%2Fcicles.ipynb.. image:: https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667
:target: https://colab.research.google.com/drive/1laPoOaGcqEBB3jTvb-pGnmDU21zwtgJBThis is a generic **U-Net** implementation as proposed by `Ronneberger et al. `_ developed with **Tensorflow 2**. This project is a reimplementation of the original `tf_unet `_.
Originally, the code was developed and used for `Radio Frequency Interference mitigation using deep convolutional neural networks `_ .
The network can be trained to perform image segmentation on arbitrary imaging data. Checkout the `Usage `_ section, the included `Jupyter notebooks `_ or `on Google Colab `_ for a toy problem or the Oxford Pet Segmentation example available on `Google Colab `_.
The code is not tied to a specific segmentation such that it can be used in a toy problem to detect circles in a noisy image.
.. image:: https://raw.githubusercontent.com/jakeret/unet/master/docs/toy_problem.png
:alt: Segmentation of a toy problem.
:align: centerTo more complex application such as the detection of radio frequency interference (RFI) in radio astronomy.
.. image:: https://raw.githubusercontent.com/jakeret/unet/master/docs/rfi.png
:alt: Segmentation of RFI in radio data.
:align: centerOr to detect galaxies and star in wide field imaging data.
.. image:: https://raw.githubusercontent.com/jakeret/unet/master/docs/galaxies.png
:alt: Segmentation of a galaxies.
:align: centerThe architectural elements of a U-Net consist of a contracting and expanding path:
.. image:: https://raw.githubusercontent.com/jakeret/unet/master/docs/unet.png
:alt: Unet architecture.
:align: centerAs you use **unet** for your exciting discoveries, please cite the paper that describes the package::
@article{akeret2017radio,
title={Radio frequency interference mitigation using deep convolutional neural networks},
author={Akeret, Joel and Chang, Chihway and Lucchi, Aurelien and Refregier, Alexandre},
journal={Astronomy and Computing},
volume={18},
pages={35--39},
year={2017},
publisher={Elsevier}
}