Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jakobzmrzlikar/meta-ml
A meta-ML model for predicting the accuracy of deep neural networks on certain datasets.
https://github.com/jakobzmrzlikar/meta-ml
deep-learning machine-learning meta-learning
Last synced: 9 days ago
JSON representation
A meta-ML model for predicting the accuracy of deep neural networks on certain datasets.
- Host: GitHub
- URL: https://github.com/jakobzmrzlikar/meta-ml
- Owner: jakobzmrzlikar
- Created: 2018-07-16T12:12:50.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2022-05-26T20:23:18.000Z (over 2 years ago)
- Last Synced: 2023-03-04T13:14:51.639Z (over 1 year ago)
- Topics: deep-learning, machine-learning, meta-learning
- Language: Python
- Homepage:
- Size: 4.37 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# meta-ML
## A meta-ML model for predicting the accuracy of deep neural networks on certain datasets. Formerly part of the [DataBench](https://www.databench.eu/) project.
### Dependencies:
* [Keras](https://github.com/keras-team/keras)
* [Tensorflow](https://www.tensorflow.org/)
* [numpy](https://www.numpy.org/)
* [scikit-learn](https://scikit-learn.org/stable/)
* [psutil](https://pypi.org/project/psutil/)### Usage
The _config_ directory contains JSON files. You must first specify your model's features and which dataset to use. Leave the _results_ section empty. After you input all the necessary parameters, simply run main.py and the _results_ section will be automatically updated. The metadataset is automatically updated as well each time a model is run on a dataset.You can alternatively only specify certain model architecture parameters and run config_generator.py to generate new config files with different hyperparameter values.