https://github.com/jalajthanaki/customer_lifetime_value_analysis
Customer life time analysis (CLV analysis). We are using Gamma-Gamma model to estimate average transaction value for each customer.
https://github.com/jalajthanaki/customer_lifetime_value_analysis
customer-analytics customer-lifetime-value e-commerce-example gamma-gamma-filter lifetimes
Last synced: 5 months ago
JSON representation
Customer life time analysis (CLV analysis). We are using Gamma-Gamma model to estimate average transaction value for each customer.
- Host: GitHub
- URL: https://github.com/jalajthanaki/customer_lifetime_value_analysis
- Owner: jalajthanaki
- Created: 2018-03-16T06:32:31.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-04-05T04:21:27.000Z (about 7 years ago)
- Last Synced: 2024-12-24T02:07:41.248Z (5 months ago)
- Topics: customer-analytics, customer-lifetime-value, e-commerce-example, gamma-gamma-filter, lifetimes
- Language: Jupyter Notebook
- Size: 21.5 MB
- Stars: 45
- Watchers: 3
- Forks: 24
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Customer lifetime value analysis
We are modelling customer lifetime value for non-contractual business.## Dependencies
* pandas
* numpy
* scipy
* matplotlib
* seaborn
* lifetimes
* jupyter notebook## Install Dependencies
```
Pandas: $ sudo pip install pandas
numpy: $ sudo pip install numpy
scipy: $ sudo pip install scipy
matplotlib:
$ sudo apt-get install libfreetype6-dev libpng-dev
$ sudo pip install matplotlib
seaborn: $ sudo pip install seaborn
jupyter notebook: $ sudo apt-get -y install ipython ipython-notebook
$ sudo -H pip install jupyter
lifetimes: $ sudo pip install lifetimes```
## Dataset
* Data set can be download from this [link](http://archive.ics.uci.edu/ml/datasets/online+retail)
* There is no need to download dataset because it is already downloaded.
* Path of dataset is `./input_data/`## Usage
Run the code given in ipython notebook `CLV_analysis_online_retail.ipynb`## Credit
Code credits for this code go to [Susan Li](https://github.com/susanli2016). I've merely created a wrapper and necessary changes to get people started.