An open API service indexing awesome lists of open source software.

https://github.com/jalajthanaki/facial_emotion_recognition_using_tensorflow

I have used FER2013 dataset and try to build the Facial emotion recognition using TensorFlow
https://github.com/jalajthanaki/facial_emotion_recognition_using_tensorflow

convolutional-neural-networks facial-emotion-recognition tensorflow

Last synced: 5 months ago
JSON representation

I have used FER2013 dataset and try to build the Facial emotion recognition using TensorFlow

Awesome Lists containing this project

README

          

# Emotion recognition CNN based approach using TensorFlow

This repository is the out project about Face emotion recognition using convolutional neural network.

![video_screenshot_16 02 2018](https://user-images.githubusercontent.com/12840374/36300907-0f8bfe86-1329-11e8-88c7-402236458387.png)

## Dependencies

- [NumPy](http://docs.scipy.org/doc/numpy-1.10.1/user/install.html)
- [Tensorflow](https://www.tensorflow.org/versions/r0.8/get_started/os_setup.html)
- [TFLearn](https://github.com/tflearn/tflearn#installation)
- [OpenCV](https://opencv-python-tutroals.readthedocs.io/en/latest/)

## Dataset

We use the [FER-2013 Faces Database](http://www.socsci.ru.nl:8180/RaFD2/RaFD?p=main), a set of 28,709 pictures of people displaying 7 emotional expressions (angry, disgusted, fearful, happy, sad, surprised and neutral).

You have to request for access to the dataset or you can get it on [Kraggle](https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data).

## Download per-trained model and data in numpy format from this link.

* Step 1: Download [data.zip](https://drive.google.com/open?id=1z74zDZDBbWOc_L62KYMbHT8McJ1vqFrw) file.
* Step 2: Unzip the files.
* Step 3: Paste all the files into the data folder of the repository

## Train
```bash
$ python emotion_recognition.py train
```

## Test

```bash
$ python emotion_recognition.py poc
```

## Paper

[Link](https://github.com/isseu/emotion-recognition-neural-networks/blob/master/paper/Report_NN.pdf)

## Credit

This code credit goes to [Enrique Correa](https://github.com/isseu). I've merely created a wrapper to get people started.