Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jamesbraza/cs330-project
Stanford CS330 Deep Multi-Task and Meta Learning Class Project
https://github.com/jamesbraza/cs330-project
course meta-learning stanford transfer-learning
Last synced: 2 days ago
JSON representation
Stanford CS330 Deep Multi-Task and Meta Learning Class Project
- Host: GitHub
- URL: https://github.com/jamesbraza/cs330-project
- Owner: jamesbraza
- Created: 2022-11-10T02:26:56.000Z (about 2 years ago)
- Default Branch: develop
- Last Pushed: 2022-12-13T07:33:14.000Z (about 2 years ago)
- Last Synced: 2024-12-23T11:42:32.046Z (11 days ago)
- Topics: course, meta-learning, stanford, transfer-learning
- Language: Jupyter Notebook
- Homepage:
- Size: 10.5 MB
- Stars: 1
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# cs330-project
[Stanford CS330][1]: Class Project.
TLDChoiceNet: Quantitatively Choosing a Transfer Learning Dataset
## Datasets
We used a few datasets from Kaggle:
- [New Plant Diseases Dataset][2]:
256 x 256 RGB JPG images of healthy and unhealthy crop leaves
- Replaced with [TensorFlow Datasets `plant_village` dataset][5]
- [Plant Leaves for Image Classification][4]:
6000 x 4000 RGB JPG images of healthy and unhealthy leaves from 12 plants
- [BIRDS 450 SPECIES- IMAGE CLASSIFICATION][3]:
224 x 224 RGB JPG images of bird speciesHere's how to easily download them all with the Kaggle API:
```bash
kaggle datasets download -p data/plant-diseases --unzip vipoooool/new-plant-diseases-dataset
kaggle datasets download -p data/plant-leaves --unzip csafrit2/plant-leaves-for-image-classification
kaggle datasets download -p data/bird-species --unzip gpiosenka/100-bird-species
```## Developers
This project was developed using Python 3.10.
### Getting Started
Here is how to create a virtual environment to work with this repo:
```bash
python -m venv venv
source venv/bin/activate
python -m pip install -r requirements.txt
```#### Including Code QA Tooling
We love quality code! If you do too,
run these commands after creating the environment:```bash
python -m pip install -r requirements-qa.txt
pre-commit install
```### Debugging with `tensorboard`
Here is how you kick off `tensorboard`:
```bash
tensorboard --logdir training
```Afterwards, go to its URL: [http://localhost:6006/](http://localhost:6006/).
[1]: https://cs330.stanford.edu/
[2]: https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset
[3]: https://www.kaggle.com/datasets/gpiosenka/100-bird-species
[4]: https://www.kaggle.com/datasets/csafrit2/plant-leaves-for-image-classification
[5]: https://www.tensorflow.org/datasets/catalog/plant_village