Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jameschapman19/scikit-prox

A package for fitting regularized models from scikit-learn via proximal gradient descent
https://github.com/jameschapman19/scikit-prox

proximal-gradient-descent regularization scikit-learn scikit-learn-api

Last synced: 3 months ago
JSON representation

A package for fitting regularized models from scikit-learn via proximal gradient descent

Awesome Lists containing this project

README

        

[![codecov](https://codecov.io/gh/jameschapman19/scikit-prox/branch/main/graph/badge.svg?token=Id6VAqEdoc)](https://codecov.io/gh/jameschapman19/scikit-prox)
![Build Status](https://github.com/jameschapman19/scikit-prox/actions/workflows/test.yml/badge.svg)
[![Documentation Status](https://readthedocs.org/projects/scikit-prox/badge/?version=latest)](https://scikit-prox.readthedocs.io/en/latest/?badge=latest)
[![version](https://img.shields.io/pypi/v/scikit-prox)](https://pypi.org/project/scikit-prox/)
[![downloads](https://img.shields.io/pypi/dm/scikit-prox)](https://pypi.org/project/scikit-prox/)

# Scikit-Prox
The goal of this project is to implement a set of algorithms for solving the following optimization problem:
minimize f(x) + g(x) where f is a smooth function and g is a proximal operator. The proximal operator of a function g is defined as:
proxg(λx) = argmin y g(y) + 1/2λ‖y − x‖2

## Installation
To install the package, run the following command:
pip install scikit-prox

## Usage

### Example 1: Lasso
The following code solves the following optimization problem:
minimize 1/2‖Ax − b‖2 + λ‖x‖1

```python
import numpy as np
from scipy import sparse
from sklearn.datasets import make_regression
from sklearn.linear_model import Lasso
from skprox.linear_model import RegularisedLinearRegression

# Generate data
X, y = make_regression(n_samples=100, n_features=1000, random_state=0, noise=4.0, bias=100.0)
X = sparse.csr_matrix(X)

# Solve the problem using scikit-learn
model = Lasso(alpha=0.1)
model.fit(X, y)
print("scikit-learn solution: {}".format(model.coef_))

# Solve the problem using scikit-prox
model = RegularisedLinearRegression(proximal='L1', sigma=0.1)
model.fit(X, y)
print("scikit-prox solution: {}".format(model.coef_))
```

### Example 2: Total Variation Regression
The following code solves the following optimization problem:
minimize 1/2‖Ax − b‖2 + λ‖∇x‖1

```python
import numpy as np
from scipy import sparse
from sklearn.datasets import make_regression
from skprox.linear_model import RegularisedLinearRegression

# Generate data
X, y = make_regression(n_samples=100, n_features=1000, random_state=0, noise=4.0, bias=100.0)
X = sparse.csr_matrix(X)

# Solve the problem using scikit-prox
model = RegularisedLinearRegression(proximal='TV', sigma=0.1)
model.fit(X, y)
print("scikit-prox solution: {}".format(model.coef_))
```

### Example 3: Grid Search
The following code solves the following optimization problem:
minimize 1/2‖Ax − b‖2 + λ‖x‖1

```python
import numpy as np
from scipy import sparse
from sklearn.datasets import make_regression
from sklearn.linear_model import Lasso
from skprox.linear_model import RegularisedLinearRegression
from sklearn.model_selection import GridSearchCV

# Generate data
X, y = make_regression(n_samples=100, n_features=1000, random_state=0, noise=4.0, bias=100.0)
X = sparse.csr_matrix(X)

# Solve the problem using scikit-learn
model = Lasso()
grid = GridSearchCV(model, {'alpha': [0.1, 0.2, 0.3]})
grid.fit(X, y)
print("scikit-learn solution: {}".format(grid.best_estimator_.coef_))

# Solve the problem using scikit-prox
model = RegularisedLinearRegression(proximal='L1')
grid = GridSearchCV(model, {'sigma': [0.1, 0.2, 0.3]})
grid.fit(X, y)
print("scikit-prox solution: {}".format(grid.best_estimator_.coef_))
```

## Documentation
The documentation is available at https://scikit-prox.readthedocs.io/en/latest/

## License
This project is licensed under the MIT License - see the LICENSE.md file for details

## Acknowledgments
This project leans on the pyproximal package borrowing all the proximal operators except for Total Variation which
is implemented using functions from skimage.