Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/janjagusch/pythonic-learning-machine
Python implementation of the Semantic Learning Machine
https://github.com/janjagusch/pythonic-learning-machine
artificial-intelligence genetic-algorithm genetic-programming machine-learning neat-python neural-network neuro-evolution python pythonic-learning-machine semantic-learning-machine
Last synced: 11 days ago
JSON representation
Python implementation of the Semantic Learning Machine
- Host: GitHub
- URL: https://github.com/janjagusch/pythonic-learning-machine
- Owner: janjagusch
- License: mit
- Created: 2018-03-03T16:20:57.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2021-06-27T18:25:45.000Z (over 3 years ago)
- Last Synced: 2023-03-06T18:01:12.566Z (over 1 year ago)
- Topics: artificial-intelligence, genetic-algorithm, genetic-programming, machine-learning, neat-python, neural-network, neuro-evolution, python, pythonic-learning-machine, semantic-learning-machine
- Language: HTML
- Size: 12.2 MB
- Stars: 2
- Watchers: 2
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
pythonic-learning-machine
==============================Python implementation of the Semantic Learning Machine.
Project Organization
------------├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org--------
Project based on the cookiecutter data science project template. #cookiecutterdatascience