An open API service indexing awesome lists of open source software.

https://github.com/jarus77/markdrop

A Python package for converting PDFs to markdown while extracting images and tables, generate descriptive text descriptions for extracted tables/images using several LLM clients. And many more functionalities. Markdrop is available on PyPI.
https://github.com/jarus77/markdrop

agents docling image-to-text llm markdown markdrop marker opensource pdf-to-markdown pdf-to-te pypi-package table-to-text

Last synced: about 2 months ago
JSON representation

A Python package for converting PDFs to markdown while extracting images and tables, generate descriptive text descriptions for extracted tables/images using several LLM clients. And many more functionalities. Markdrop is available on PyPI.

Awesome Lists containing this project

README

        


Markdrop Logo

Markdrop

[![Downloads](https://static.pepy.tech/badge/markdrop)](https://pepy.tech/projects/markdrop)
[![PyPI Version](https://img.shields.io/pypi/v/markdrop)](https://pypi.org/project/markdrop/)
[![License](https://img.shields.io/github/license/shoryasethia/markdrop)](https://github.com/shoryasethia/markdrop/blob/main/LICENSE)
[![Stars](https://img.shields.io/github/stars/shoryasethia/markdrop?style=social)](https://github.com/shoryasethia/markdrop/stargazers)
[![Issues](https://img.shields.io/github/issues/shoryasethia/markdrop)](https://github.com/shoryasethia/markdrop/issues)
[![Forks](https://img.shields.io/github/forks/shoryasethia/markdrop?style=social)](https://github.com/shoryasethia/markdrop/network/members)
Markdrop - PDF to markdown | Tables to Excel | Table/Images Description | Product Hunt

A Python package for converting PDFs to markdown while extracting images and tables, generate descriptive text descriptions for extracted tables/images using several LLM clients. And many more functionalities. Markdrop is available on PyPI.

## Quick Start

[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oApTrP_kjNn0s1tpE0SIWRyGzYfflQsi?usp=sharing)
[![Watch the demo](https://img.shields.io/badge/YouTube-Demo-red?logo=youtube&logoColor=white)](https://youtu.be/2xg7W0-oiw0)

## Features

- [x] PDF to Markdown conversion with formatting preservation using Docling
- [x] Automatic image extraction with quality preservation using XRef Id
- [x] Table detection using Microsoft's Table Transformer
- [x] PDF URL support for core functionalities
- [x] AI-powered image and table descriptions using multiple LLM providers
- [x] Interactive HTML output with downloadable Excel tables
- [x] Customizable image resolution and UI elements
- [x] Comprehensive logging system
- [ ] Support for other files
- [ ] Streamlit/web interface

## Installation

```bash
pip install markdrop
```

#### Python Package Index (PyPI) Page: https://pypi.org/project/markdrop

### Basic PDF Processing

```python
from markdrop import extract_images, make_markdown, extract_tables_from_pdf

source_pdf = 'url/or/path/to/pdf/file' # Replace with your local PDF file path or a URL
output_dir = 'data/output' # Replace with desired output directory's path

make_markdown(source_pdf, output_dir)
extract_images(source_pdf, output_dir)
extract_tables_from_pdf(source_pdf, output_dir=output_dir)
```

### Advanced PDF Processing with MarkDrop

```python
from markdrop import markdrop, MarkDropConfig, add_downloadable_tables
from pathlib import Path
import logging

# Configure processing options
config = MarkDropConfig(
image_resolution_scale=2.0, # Scale factor for image resolution
download_button_color='#444444', # Color for download buttons in HTML
log_level=logging.INFO, # Logging detail level
log_dir='logs', # Directory for log files
excel_dir='markdropped-excel-tables' # Directory for Excel table exports
)

# Process PDF document
input_doc_path = "path/to/input.pdf"
output_dir = Path('output_directory')

# Convert PDF and generate HTML with images and tables
html_path = markdrop(input_doc_path, output_dir, config)

# Add interactive table download functionality
downloadable_html = add_downloadable_tables(html_path, config)
```

### AI-Powered Content Analysis

```python
from markdrop import setup_keys, process_markdown, ProcessorConfig, AIProvider, logger
from pathlib import Path

# Set up API keys for AI providers
setup_apikeys(key='gemini') # or setup_keys(key='openai')

# Configure AI processing options
config = ProcessorConfig(
input_path="path/to/markdown/file.md", # Input markdown file path
output_dir=Path("output_directory"), # Output directory
ai_provider=AIProvider.GEMINI, # AI provider (GEMINI or OPENAI)
remove_images=False, # Keep or remove original images
remove_tables=False, # Keep or remove original tables
table_descriptions=True, # Generate table descriptions
image_descriptions=True, # Generate image descriptions
max_retries=3, # Number of API call retries
retry_delay=2, # Delay between retries in seconds
gemini_model_name="gemini-1.5-flash", # Gemini model for images
gemini_text_model_name="gemini-pro", # Gemini model for text
image_prompt=DEFAULT_IMAGE_PROMPT, # Custom prompt for image analysis
table_prompt=DEFAULT_TABLE_PROMPT # Custom prompt for table analysis
)

# Process markdown with AI descriptions
output_path = process_markdown(config)
```

### Image Description Generation

```python
from markdrop import generate_descriptions

prompt = "Give textual highly detailed descriptions from this image ONLY, nothing else."
input_path = 'path/to/img_file/or/dir'
output_dir = 'data/output'
llm_clients = ['gemini', 'llama-vision'] # Available: ['qwen', 'gemini', 'openai', 'llama-vision', 'molmo', 'pixtral']

generate_descriptions(
input_path=input_path,
output_dir=output_dir,
prompt=prompt,
llm_client=llm_clients
)
```

## API Reference

### Core Functions

#### markdrop(input_doc_path: str, output_dir: str, config: Optional[MarkDropConfig] = None) -> Path
Converts PDF to markdown and HTML with enhanced features.

Parameters:
- `input_doc_path` (str): Path to input PDF file
- `output_dir` (str): Output directory path
- `config` (MarkDropConfig, optional): Configuration options for processing

#### add_downloadable_tables(html_path: Path, config: Optional[MarkDropConfig] = None) -> Path
Adds interactive table download functionality to HTML output.

Parameters:
- `html_path` (Path): Path to HTML file
- `config` (MarkDropConfig, optional): Configuration options

### Configuration Classes

#### MarkDropConfig
Configuration for PDF processing:
- `image_resolution_scale` (float): Scale factor for image resolution (default: 2.0)
- `download_button_color` (str): HTML color code for download buttons (default: '#444444')
- `log_level` (int): Logging level (default: logging.INFO)
- `log_dir` (str): Directory for log files (default: 'logs')
- `excel_dir` (str): Directory for Excel table exports (default: 'markdropped-excel-tables')

#### ProcessorConfig
Configuration for AI processing:
- `input_path` (str): Path to markdown file
- `output_dir` (str): Output directory path
- `ai_provider` (AIProvider): AI provider selection (GEMINI or OPENAI)
- `remove_images` (bool): Whether to remove original images
- `remove_tables` (bool): Whether to remove original tables
- `table_descriptions` (bool): Generate table descriptions
- `image_descriptions` (bool): Generate image descriptions
- `max_retries` (int): Maximum API call retries
- `retry_delay` (int): Delay between retries in seconds
- `gemini_model_name` (str): Gemini model for image processing
- `gemini_text_model_name` (str): Gemini model for text processing
- `image_prompt` (str): Custom prompt for image analysis
- `table_prompt` (str): Custom prompt for table analysis

### Legacy Functions

#### make_markdown(source: str, output_dir: str, verbose: bool = False)
Legacy function for basic PDF to markdown conversion.

Parameters:
- `source` (str): Path to input PDF or URL
- `output_dir` (str): Output directory path
- `verbose` (bool): Enable detailed logging

#### extract_images(source: str, output_dir: str, verbose: bool = False)
Legacy function for basic image extraction.

Parameters:
- `source` (str): Path to input PDF or URL
- `output_dir` (str): Output directory path
- `verbose` (bool): Enable detailed logging

#### extract_tables_from_pdf(pdf_path: str, **kwargs)
Legacy function for basic table extraction.

Parameters:
- `pdf_path` (str): Path to input PDF or URL
- `start_page` (int, optional): Starting page number
- `end_page` (int, optional): Ending page number
- `threshold` (float, optional): Detection confidence threshold
- `output_dir` (str): Output directory path

### Quick Start for Legacy Functions
Check an example in [`run.py`](https://github.com/shoryasethia/markdrop/blob/main/markdrop/run.py)

## Contributing

We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.

### Development Setup

1. Clone the repository:
```bash
git clone https://github.com/shoryasethia/markdrop.git
cd markdrop
```

2. Create a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```

3. Install development dependencies:
```bash
pip install -r requirements.txt
```

## Project Structure

```bash
markdrop/
├── LICENSE
├── README.md
├── CONTRIBUTING.md
├── CHANGELOG.md
├── requirements.txt
├── setup.py
└── markdrop/
├── __init__.py
├── src
| └── markdrop-logo.png
├── main.py
├── process.py
├── api_setup.py
├── parse.py
├── utils.py
├── helper.py
├── ignore_warnings.py
├── run.py
└── models/
├── __init__.py
├── .env
├── img_descriptions.py
├── logger.py
├── model_loader.py
├── responder.py
└── setup_keys.py
```
## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=shoryasethia/markdrop&type=Timeline)](https://star-history.com/#shoryasethia/markdrop&Timeline)

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Changelog

See [CHANGELOG.md](CHANGELOG.md) for version history.

## Code of Conduct

Please note that this project follows our [Code of Conduct](CODE_OF_CONDUCT.md).

## Support

- [Open an issue](https://github.com/shoryasethia/markdrop/issues)