https://github.com/jarus77/markdrop
A Python package for converting PDFs to markdown while extracting images and tables, generate descriptive text descriptions for extracted tables/images using several LLM clients. And many more functionalities. Markdrop is available on PyPI.
https://github.com/jarus77/markdrop
agents docling image-to-text llm markdown markdrop marker opensource pdf-to-markdown pdf-to-te pypi-package table-to-text
Last synced: about 2 months ago
JSON representation
A Python package for converting PDFs to markdown while extracting images and tables, generate descriptive text descriptions for extracted tables/images using several LLM clients. And many more functionalities. Markdrop is available on PyPI.
- Host: GitHub
- URL: https://github.com/jarus77/markdrop
- Owner: Jarus77
- License: apache-2.0
- Created: 2025-04-05T12:15:28.000Z (about 2 months ago)
- Default Branch: main
- Last Pushed: 2025-04-05T12:17:16.000Z (about 2 months ago)
- Last Synced: 2025-04-05T13:24:59.389Z (about 2 months ago)
- Topics: agents, docling, image-to-text, llm, markdown, markdrop, marker, opensource, pdf-to-markdown, pdf-to-te, pypi-package, table-to-text
- Language: Python
- Homepage: https://pypi.org/project/markdrop/
- Size: 85.9 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
![]()
Markdrop
[](https://pepy.tech/projects/markdrop)
[](https://pypi.org/project/markdrop/)
[](https://github.com/shoryasethia/markdrop/blob/main/LICENSE)
[](https://github.com/shoryasethia/markdrop/stargazers)
[](https://github.com/shoryasethia/markdrop/issues)
[](https://github.com/shoryasethia/markdrop/network/members)A Python package for converting PDFs to markdown while extracting images and tables, generate descriptive text descriptions for extracted tables/images using several LLM clients. And many more functionalities. Markdrop is available on PyPI.
## Quick Start
[](https://colab.research.google.com/drive/1oApTrP_kjNn0s1tpE0SIWRyGzYfflQsi?usp=sharing)
[](https://youtu.be/2xg7W0-oiw0)## Features
- [x] PDF to Markdown conversion with formatting preservation using Docling
- [x] Automatic image extraction with quality preservation using XRef Id
- [x] Table detection using Microsoft's Table Transformer
- [x] PDF URL support for core functionalities
- [x] AI-powered image and table descriptions using multiple LLM providers
- [x] Interactive HTML output with downloadable Excel tables
- [x] Customizable image resolution and UI elements
- [x] Comprehensive logging system
- [ ] Support for other files
- [ ] Streamlit/web interface## Installation
```bash
pip install markdrop
```#### Python Package Index (PyPI) Page: https://pypi.org/project/markdrop
### Basic PDF Processing
```python
from markdrop import extract_images, make_markdown, extract_tables_from_pdfsource_pdf = 'url/or/path/to/pdf/file' # Replace with your local PDF file path or a URL
output_dir = 'data/output' # Replace with desired output directory's pathmake_markdown(source_pdf, output_dir)
extract_images(source_pdf, output_dir)
extract_tables_from_pdf(source_pdf, output_dir=output_dir)
```### Advanced PDF Processing with MarkDrop
```python
from markdrop import markdrop, MarkDropConfig, add_downloadable_tables
from pathlib import Path
import logging# Configure processing options
config = MarkDropConfig(
image_resolution_scale=2.0, # Scale factor for image resolution
download_button_color='#444444', # Color for download buttons in HTML
log_level=logging.INFO, # Logging detail level
log_dir='logs', # Directory for log files
excel_dir='markdropped-excel-tables' # Directory for Excel table exports
)# Process PDF document
input_doc_path = "path/to/input.pdf"
output_dir = Path('output_directory')# Convert PDF and generate HTML with images and tables
html_path = markdrop(input_doc_path, output_dir, config)# Add interactive table download functionality
downloadable_html = add_downloadable_tables(html_path, config)
```### AI-Powered Content Analysis
```python
from markdrop import setup_keys, process_markdown, ProcessorConfig, AIProvider, logger
from pathlib import Path# Set up API keys for AI providers
setup_apikeys(key='gemini') # or setup_keys(key='openai')# Configure AI processing options
config = ProcessorConfig(
input_path="path/to/markdown/file.md", # Input markdown file path
output_dir=Path("output_directory"), # Output directory
ai_provider=AIProvider.GEMINI, # AI provider (GEMINI or OPENAI)
remove_images=False, # Keep or remove original images
remove_tables=False, # Keep or remove original tables
table_descriptions=True, # Generate table descriptions
image_descriptions=True, # Generate image descriptions
max_retries=3, # Number of API call retries
retry_delay=2, # Delay between retries in seconds
gemini_model_name="gemini-1.5-flash", # Gemini model for images
gemini_text_model_name="gemini-pro", # Gemini model for text
image_prompt=DEFAULT_IMAGE_PROMPT, # Custom prompt for image analysis
table_prompt=DEFAULT_TABLE_PROMPT # Custom prompt for table analysis
)# Process markdown with AI descriptions
output_path = process_markdown(config)
```### Image Description Generation
```python
from markdrop import generate_descriptionsprompt = "Give textual highly detailed descriptions from this image ONLY, nothing else."
input_path = 'path/to/img_file/or/dir'
output_dir = 'data/output'
llm_clients = ['gemini', 'llama-vision'] # Available: ['qwen', 'gemini', 'openai', 'llama-vision', 'molmo', 'pixtral']generate_descriptions(
input_path=input_path,
output_dir=output_dir,
prompt=prompt,
llm_client=llm_clients
)
```## API Reference
### Core Functions
#### markdrop(input_doc_path: str, output_dir: str, config: Optional[MarkDropConfig] = None) -> Path
Converts PDF to markdown and HTML with enhanced features.Parameters:
- `input_doc_path` (str): Path to input PDF file
- `output_dir` (str): Output directory path
- `config` (MarkDropConfig, optional): Configuration options for processing#### add_downloadable_tables(html_path: Path, config: Optional[MarkDropConfig] = None) -> Path
Adds interactive table download functionality to HTML output.Parameters:
- `html_path` (Path): Path to HTML file
- `config` (MarkDropConfig, optional): Configuration options### Configuration Classes
#### MarkDropConfig
Configuration for PDF processing:
- `image_resolution_scale` (float): Scale factor for image resolution (default: 2.0)
- `download_button_color` (str): HTML color code for download buttons (default: '#444444')
- `log_level` (int): Logging level (default: logging.INFO)
- `log_dir` (str): Directory for log files (default: 'logs')
- `excel_dir` (str): Directory for Excel table exports (default: 'markdropped-excel-tables')#### ProcessorConfig
Configuration for AI processing:
- `input_path` (str): Path to markdown file
- `output_dir` (str): Output directory path
- `ai_provider` (AIProvider): AI provider selection (GEMINI or OPENAI)
- `remove_images` (bool): Whether to remove original images
- `remove_tables` (bool): Whether to remove original tables
- `table_descriptions` (bool): Generate table descriptions
- `image_descriptions` (bool): Generate image descriptions
- `max_retries` (int): Maximum API call retries
- `retry_delay` (int): Delay between retries in seconds
- `gemini_model_name` (str): Gemini model for image processing
- `gemini_text_model_name` (str): Gemini model for text processing
- `image_prompt` (str): Custom prompt for image analysis
- `table_prompt` (str): Custom prompt for table analysis### Legacy Functions
#### make_markdown(source: str, output_dir: str, verbose: bool = False)
Legacy function for basic PDF to markdown conversion.Parameters:
- `source` (str): Path to input PDF or URL
- `output_dir` (str): Output directory path
- `verbose` (bool): Enable detailed logging#### extract_images(source: str, output_dir: str, verbose: bool = False)
Legacy function for basic image extraction.Parameters:
- `source` (str): Path to input PDF or URL
- `output_dir` (str): Output directory path
- `verbose` (bool): Enable detailed logging#### extract_tables_from_pdf(pdf_path: str, **kwargs)
Legacy function for basic table extraction.Parameters:
- `pdf_path` (str): Path to input PDF or URL
- `start_page` (int, optional): Starting page number
- `end_page` (int, optional): Ending page number
- `threshold` (float, optional): Detection confidence threshold
- `output_dir` (str): Output directory path### Quick Start for Legacy Functions
Check an example in [`run.py`](https://github.com/shoryasethia/markdrop/blob/main/markdrop/run.py)## Contributing
We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.
### Development Setup
1. Clone the repository:
```bash
git clone https://github.com/shoryasethia/markdrop.git
cd markdrop
```2. Create a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```3. Install development dependencies:
```bash
pip install -r requirements.txt
```## Project Structure
```bash
markdrop/
├── LICENSE
├── README.md
├── CONTRIBUTING.md
├── CHANGELOG.md
├── requirements.txt
├── setup.py
└── markdrop/
├── __init__.py
├── src
| └── markdrop-logo.png
├── main.py
├── process.py
├── api_setup.py
├── parse.py
├── utils.py
├── helper.py
├── ignore_warnings.py
├── run.py
└── models/
├── __init__.py
├── .env
├── img_descriptions.py
├── logger.py
├── model_loader.py
├── responder.py
└── setup_keys.py
```
## Star History[](https://star-history.com/#shoryasethia/markdrop&Timeline)
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Changelog
See [CHANGELOG.md](CHANGELOG.md) for version history.
## Code of Conduct
Please note that this project follows our [Code of Conduct](CODE_OF_CONDUCT.md).
## Support
- [Open an issue](https://github.com/shoryasethia/markdrop/issues)