Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/javascriptdata/danfojs

Danfo.js is an open source, JavaScript library providing high performance, intuitive, and easy to use data structures for manipulating and processing structured data.
https://github.com/javascriptdata/danfojs

danfojs data-analysis data-analytics data-manipulation data-science dataframe javascript pandas plotting-charts stream-data stream-processing table tensorflow tensors

Last synced: 4 days ago
JSON representation

Danfo.js is an open source, JavaScript library providing high performance, intuitive, and easy to use data structures for manipulating and processing structured data.

Awesome Lists containing this project

README

        




-----------------

## Danfojs: powerful javascript data analysis toolkit
![Node.js CI](https://github.com/opensource9ja/danfojs/workflows/Node.js%20CI/badge.svg?branch=master)
[![](https://data.jsdelivr.com/v1/package/npm/danfojs/badge?style=rounded)](https://www.jsdelivr.com/package/npm/danfojs)
[![Coverage Status](https://coveralls.io/repos/github/opensource9ja/danfojs/badge.svg)](https://coveralls.io/github/opensource9ja/danfojs)
![Twitter](https://img.shields.io/twitter/url?style=social&url=https%3A%2F%2Ftwitter.com%2FDanfoJs)
Patreon donate button

## What is it?

**Danfo.js** is a javascript package that provides fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It is heavily inspired by [Pandas](https://pandas.pydata.org/pandas-docs/stable/) library, and provides a similar API. This means that users familiar with [Pandas](https://pandas.pydata.org/pandas-docs/stable/), can easily pick up danfo.js.

## Main Features

- Danfo.js is fast and supports Tensorflow.js tensors out of the box. This means you can [convert Danfo data structure](https://danfo.jsdata.org/api-reference/dataframe/dataframe.tensor) to Tensors.
- Easy handling of [missing-data](https://danfo.jsdata.org/getting-started#missing-data) (represented as
`NaN`) in floating point as well as non-floating point data
- Size mutability: columns can be [inserted/deleted](https://danfo.jsdata.org/api-reference/dataframe#combining-comparing-joining-merging) from DataFrame
- Automatic and explicit [alignment](https://danfo.jsdata.org/api-reference/dataframe#reindexing-selection-label-manipulation): objects can
be explicitly aligned to a set of labels, or the user can simply
ignore the labels and let `Series`, `DataFrame`, etc. automatically
align the data for you in computations
- Powerful, flexible [groupby](https://danfo.jsdata.org/api-reference/groupby) functionality to perform
split-apply-combine operations on data sets, for both aggregating
and transforming data
- Make it easy to convert Arrays, JSONs, List or Objects, Tensors and
differently-indexed data structures
into DataFrame objects
- Intelligent label-based [slicing](https://danfo.jsdata.org/api-reference/dataframe/danfo.dataframe.loc), [fancy indexing](https://danfo.jsdata.org/api-reference/dataframe/danfo.dataframe.iloc), and [querying](https://danfo.jsdata.org/api-reference/dataframe/danfo.dataframe.query) of
large data sets
- Intuitive [merging](https://danfo.jsdata.org/api-reference/general-functions/danfo.merge) and [joining](https://danfo.jsdata.org/api-reference/general-functions/danfo.concat) data
sets
- Robust IO tools for loading data from [flat-files](https://danfo.jsdata.org/api-reference/input-output)
(CSV, Json, Excel).
- Powerful, flexible and intutive API for [plotting](https://danfo.jsdata.org/api-reference/plotting) DataFrames and Series interactively.
- [Timeseries](https://danfo.jsdata.org/api-reference/series#accessors)-specific functionality: date range
generation and date and time properties.
- Robust data preprocessing functions like [OneHotEncoders](https://danfo.jsdata.org/api-reference/general-functions/danfo.onehotencoder), [LabelEncoders](https://danfo.jsdata.org/api-reference/general-functions/danfo.labelencoder), and scalers like [StandardScaler](https://danfo.jsdata.org/api-reference/general-functions/danfo.standardscaler) and [MinMaxScaler](https://danfo.jsdata.org/api-reference/general-functions/danfo.minmaxscaler) are supported on DataFrame and Series

## Installation
There are three ways to install and use Danfo.js in your application
* For Nodejs applications, you can install the [__danfojs-node__]() version via package managers like yarn and/or npm:

```bash
npm install danfojs-node

or

yarn add danfojs-node
```
For client-side applications built with frameworks like React, Vue, Next.js, etc, you can install the [__danfojs__]() version:

```bash
npm install danfojs

or

yarn add danfojs
```

For use directly in HTML files, you can add the latest script tag from [JsDelivr](https://www.jsdelivr.com/package/npm/danfojs) to your HTML file:

```html

```
See all available versions [here](https://www.jsdelivr.com/package/npm/danfojs)

### Quick Examples
* [Danfojs with HTML and vanilla JavaScript on CodePen](https://codepen.io/risingodegua/pen/bGpwyYW)
* [Danfojs with React on Code Sandbox](https://codesandbox.io/s/using-danfojs-in-react-dwpv54?file=/src/App.js)
* [Danfojs on ObservableHq](https://observablehq.com/@risingodegua/using-danfojs-on-observablehq)
* [Danfojs in Nodejs on Replit](https://replit.com/@RisingOdegua/Danfojs-in-Nodejs)

### Example Usage in the Browser
```html




Document




dfd.readCSV("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")
.then(df => {

df['AAPL.Open'].plot("div1").box() //makes a box plot

df.plot("div2").table() //display csv as table

new_df = df.setIndex({ column: "Date", drop: true }); //resets the index to Date column
new_df.head().print() //
new_df.plot("div3").line({
config: {
columns: ["AAPL.Open", "AAPL.High"]
}
}) //makes a timeseries plot

}).catch(err => {
console.log(err);
})

```

Output in Browser:

![](assets/browser-out.gif)

### Example usage in Nodejs

```javascript
const dfd = require("danfojs-node");

const file_url =
"https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv";
dfd
.readCSV(file_url)
.then((df) => {
//prints the first five columns
df.head().print();

// Calculate descriptive statistics for all numerical columns
df.describe().print();

//prints the shape of the data
console.log(df.shape);

//prints all column names
console.log(df.columns);

// //prints the inferred dtypes of each column
df.ctypes.print();

//selecting a column by subsetting
df["Name"].print();

//drop columns by names
let cols_2_remove = ["Age", "Pclass"];
let df_drop = df.drop({ columns: cols_2_remove, axis: 1 });
df_drop.print();

//select columns by dtypes
let str_cols = df_drop.selectDtypes(["string"]);
let num_cols = df_drop.selectDtypes(["int32", "float32"]);
str_cols.print();
num_cols.print();

//add new column to Dataframe

let new_vals = df["Fare"].round(1);
df_drop.addColumn("fare_round", new_vals, { inplace: true });
df_drop.print();

df_drop["fare_round"].round(2).print(5);

//prints the number of occurence each value in the column
df_drop["Survived"].valueCounts().print();

//print the last ten elementa of a DataFrame
df_drop.tail(10).print();

//prints the number of missing values in a DataFrame
df_drop.isNa().sum().print();
})
.catch((err) => {
console.log(err);
});

```
Output in Node Console:

![](assets/node-rec.gif)
## Notebook support
* VsCode nodejs notebook extension now supports Danfo.js. See guide [here](https://marketplace.visualstudio.com/items?itemName=donjayamanne.typescript-notebook)
* ObservableHQ Notebooks. See example notebook [here](https://observablehq.com/@risingodegua/using-danfojs-on-observablehq)

#### [See the Official Getting Started Guide](https://danfo.jsdata.org/getting-started)

## Documentation
The official documentation can be found [here](https://danfo.jsdata.org)

## Danfo.js Official Book

We published a book titled "Building Data Driven Applications with Danfo.js". Read more about it [here](https://danfo.jsdata.org/building-data-driven-applications-with-danfo.js-book)

## Discussion and Development
Development discussions take place [here](https://github.com/opensource9ja/danfojs/discussions).

## Contributing to Danfo
All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome. A detailed overview on how to contribute can be found in the [contributing guide](https://danfo.jsdata.org/contributing-guide).

#### Licence [MIT](https://github.com/opensource9ja/danfojs/blob/master/LICENCE)

#### Created by [Rising Odegua](https://github.com/risenW) and [Stephen Oni](https://github.com/steveoni)

Danfo.js - Open Source JavaScript library for manipulating data. | Product Hunt Embed