Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jay-johnson/antinex-core
Network exploit detection using highly accurate pre-trained deep neural networks with Celery + Keras + Tensorflow + Redis
https://github.com/jay-johnson/antinex-core
ai-security anti-nex artificial-intelligence celery docker jupyter keras redis tensorflow
Last synced: 2 months ago
JSON representation
Network exploit detection using highly accurate pre-trained deep neural networks with Celery + Keras + Tensorflow + Redis
- Host: GitHub
- URL: https://github.com/jay-johnson/antinex-core
- Owner: jay-johnson
- License: apache-2.0
- Created: 2018-03-06T08:35:27.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-12-07T20:06:21.000Z (about 6 years ago)
- Last Synced: 2024-08-10T22:54:50.312Z (5 months ago)
- Topics: ai-security, anti-nex, artificial-intelligence, celery, docker, jupyter, keras, redis, tensorflow
- Language: Jupyter Notebook
- Homepage: http://antinex.readthedocs.io/en/latest/
- Size: 380 KB
- Stars: 20
- Watchers: 8
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
README
AntiNex Core
============Automating network exploit detection using highly accurate pre-trained deep neural networks.
As of 2018-03-12, the core can repeatedly predict attacks on Django, Flask, React + Redux, Vue, and Spring application servers by training using the pre-recorded `AntiNex datasets`_ with cross validation scores above **~99.8%** with automated scaler normalization.
.. image:: https://travis-ci.org/jay-johnson/antinex-core.svg?branch=master
:target: https://travis-ci.org/jay-johnson/antinex-coreAccuracy + Training + Cross Validation in a Jupyter Notebook
------------------------------------------------------------https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb
Using a Pre-Trained Deep Neural Network in a Jupyter Notebook
-------------------------------------------------------------https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb
.. _AntiNex datasets: https://github.com/jay-johnson/antinex-datasets
Overview
--------The core is a Celery worker pool for processing training and prediction requests for deep neural networks to detect network exploits (Nex) using Keras and Tensorflow in near real-time. Internally each worker manages a buffer of pre-trained models identified by the ``label`` from the initial training request. Once trained, a model can be used for rapid prediction testing provided the same ``label`` name is used on the prediction request. Models can also be re-trained by using the training api with the same ``label``. While the initial focus is on network exploits, the repository also includes mock stock data for demonstrating running a worker pool to quickly predict regression data (like stock prices) with many, pre-trained deep neural networks.
This repository is a standalone training and prediction worker pool that is decoupled from the AntiNex REST API:
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
AntiNex Stack Status
--------------------AntiNex Core Worker is part of the AntiNex stack:
.. list-table::
:header-rows: 1* - Component
- Build
- Docs Link
- Docs Build
* - `REST API `__
- .. image:: https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg?branch=master
:alt: Travis Tests
:target: https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex/badge/?version=latest
:alt: Read the Docs REST API Tests
:target: https://readthedocs.org/projects/antinex/badge/?version=latest
* - `Core Worker `__
- .. image:: https://travis-ci.org/jay-johnson/antinex-core.svg?branch=master
:alt: Travis AntiNex Core Tests
:target: https://travis-ci.org/jay-johnson/antinex-core.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex-core-worker/badge/?version=latest
:alt: Read the Docs AntiNex Core Tests
:target: http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
* - `Network Pipeline `__
- .. image:: https://travis-ci.org/jay-johnson/network-pipeline.svg?branch=master
:alt: Travis AntiNex Network Pipeline Tests
:target: https://travis-ci.org/jay-johnson/network-pipeline.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
:alt: Read the Docs AntiNex Network Pipeline Tests
:target: https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
* - `AI Utils `__
- .. image:: https://travis-ci.org/jay-johnson/antinex-utils.svg?branch=master
:alt: Travis AntiNex AI Utils Tests
:target: https://travis-ci.org/jay-johnson/antinex-utils.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex-ai-utilities/badge/?version=latest
:alt: Read the Docs AntiNex AI Utils Tests
:target: http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
* - `Client `__
- .. image:: https://travis-ci.org/jay-johnson/antinex-client.svg?branch=master
:alt: Travis AntiNex Client Tests
:target: https://travis-ci.org/jay-johnson/antinex-client.svg
- `Docs `__
- .. image:: https://readthedocs.org/projects/antinex-client/badge/?version=latest
:alt: Read the Docs AntiNex Client Tests
:target: https://readthedocs.org/projects/antinex-client/badge/?version=latestInstall
-------pip install antinex-core
Optional for Generating Images
------------------------------If you want to generate images please install ``python3-tk`` on Ubuntu.
::
sudo apt-get install python3-tk
Docker
------Start the container for browsing with Jupyter:
::
# if you do not have docker compose installed, you can try installing it with:
# pip install docker-compose
cd docker
./start-stack.shOpen Jupyter Notebook with Django Deep Neural Network Analysis
--------------------------------------------------------------Default password is: ``admin``
http://localhost:8888/notebooks/AntiNex-Protecting-Django.ipynb
View Notebook Presentation Slides
---------------------------------#. Use ``Alt + r`` inside the notebook
#. Use the non-vertical scolling url: http://localhost:8889/Slides-AntiNex-Protecting-Django.slides.html
#. Use the non-vertical scolling url: http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html
Run
---Please make sure redis is running and accessible before starting the core:
::
redis-cli
127.0.0.1:6379>With redis running and the antinex-core pip installed in the python 3 runtime, use this command to start the core:
::
./run-antinex-core.sh
Or with celery:
::
celery worker -A antinex_core.antinex_worker -l DEBUG
Publish a Predict Request
-------------------------To train and predict with the new automated scaler-normalized dataset with a 99.8% prediction accuracy for detecting attacks using a wide, two-layer deep neural network with the `AntiNex datasets`_ run the following steps.
.. _AntiNex datasets: https://github.com/jay-johnson/antinex-datasets
Clone
-----Please make sure to clone the dataset repo to the pre-configured location:
::
mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/antinex-datasetsDjango - Train and Predict
--------------------------::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-django-antinex-simple.json
Flask - Train and Predict
-------------------------::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-flask-antinex-simple.json
React and Redux - Train and Predict
-----------------------------------::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-react-redux-antinex-simple.json
Vue - Train and Predict
-----------------------::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-vue-antinex-simple.json
Spring - Train and Predict
--------------------------::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-spring-antinex-simple.json
Accuracy and Prediction Report
------------------------------After a few minutes the final report will be printed out like:
::
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30178 - label_value=1.0 predicted=1 label=attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30179 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30180 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30181 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30182 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30183 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30184 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30185 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30186 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30187 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30188 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30189 - label_value=1.0 predicted=1 label=attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30190 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30191 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30192 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30193 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30194 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30195 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30196 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30197 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30198 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30199 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,947 - antinex-prc - INFO - Full-Django-AntiNex-Simple-Scaler-DNN made predictions=30200 found=30200 accuracy=99.84685430463577
2018-03-11 23:35:00,947 - antinex-prc - INFO - Full-Django-AntiNex-Simple-Scaler-DNN - saving model=full-django-antinex-simple-scaler-dnnIf you do not have the datasets cloned locally, you can use the included minimized dataset from the repo:
::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-django-antinex-simple.json
Publish a Train Request
-----------------------::
./antinex_core/scripts/publish_train_request.py
Publish a Regression Prediction Request
---------------------------------------::
./antinex_core/scripts/publish_regression_predict.py
JSON API
--------The AntiNex core manages a pool of workers that are subscribed to process tasks found in two queues (``webapp.train.requests`` and ``webapp.predict.requests``). Tasks are defined as JSON dictionaries and must have the following structure:
::
{
"label": "Django-AntiNex-Simple-Scaler-DNN",
"dataset": "./tests/datasets/classification/cleaned_attack_scans.csv",
"apply_scaler": true,
"ml_type": "classification",
"predict_feature": "label_value",
"features_to_process": [
"eth_type",
"idx",
"ip_ihl",
"ip_len",
"ip_tos",
"ip_version",
"tcp_dport",
"tcp_fields_options.MSS",
"tcp_fields_options.Timestamp",
"tcp_fields_options.WScale",
"tcp_seq",
"tcp_sport"
],
"ignore_features": [
],
"sort_values": [
],
"seed": 42,
"test_size": 0.2,
"batch_size": 32,
"epochs": 10,
"num_splits": 2,
"loss": "binary_crossentropy",
"optimizer": "adam",
"metrics": [
"accuracy"
],
"histories": [
"val_loss",
"val_acc",
"loss",
"acc"
],
"model_desc": {
"layers": [
{
"num_neurons": 250,
"init": "uniform",
"activation": "relu"
},
{
"num_neurons": 1,
"init": "uniform",
"activation": "sigmoid"
}
]
},
"label_rules": {
"labels": [
"not_attack",
"not_attack",
"attack"
],
"label_values": [
-1,
0,
1
]
},
"version": 1
}Regression prediction tasks are also supported, and here is an example from an included dataset with mock stock prices:
::
{
"label": "Scaler-Close-Regression",
"dataset": "./tests/datasets/regression/stock.csv",
"apply_scaler": true,
"ml_type": "regression",
"predict_feature": "close",
"features_to_process": [
"high",
"low",
"open",
"volume"
],
"ignore_features": [
],
"sort_values": [
],
"seed": 7,
"test_size": 0.2,
"batch_size": 32,
"epochs": 50,
"num_splits": 2,
"loss": "mse",
"optimizer": "adam",
"metrics": [
"accuracy"
],
"model_desc": {
"layers": [
{
"activation": "relu",
"init": "uniform",
"num_neurons": 200
},
{
"activation": null,
"init": "uniform",
"num_neurons": 1
}
]
}
}Splunk Environment Variables
----------------------------This repository uses the `Spylunking `__ logger that supports publishing logs to Splunk over the authenticated HEC REST API. You can set these environment variables to publish to Splunk:
::
export SPLUNK_ADDRESS=""
export SPLUNK_API_ADDRESS=""
export SPLUNK_USER=""
export SPLUNK_PASSWORD=""
export SPLUNK_TOKEN=""
export SPLUNK_INDEX=""
export SPLUNK_QUEUE_SIZE=""
export SPLUNK_RETRY_COUNT=""
export SPLUNK_RETRY_BACKOFF=""
export SPLUNK_SLEEP_INTERVAL=""
export SPLUNK_SOURCE=""
export SPLUNK_SOURCETYPE=""
export SPLUNK_TIMEOUT=""
export SPLUNK_DEBUG="<1 enable debug|0 off - very verbose logging in the Splunk Publishers>"Development
-----------
::virtualenv -p python3 ~/.venvs/antinexcore && source ~/.venvs/antinexcore/bin/activate && pip install -e .
Testing
-------Run all
::
python setup.py test
Run a test case
::
python -m unittest tests.test_train.TestTrain.test_train_antinex_simple_success_retrain
Linting
-------flake8 .
pycodestyle .
License
-------Apache 2.0 - Please refer to the LICENSE_ for more details
.. _License: https://github.com/jay-johnson/antinex-core/blob/master/LICENSE